Skip to main content

Enrichment of Human Platelet Membranes for Proteomic Analysis

  • Protocol
Membrane Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 528))

Abstract

Platelets (thrombocytes) are the smallest human blood cells and are pivotal in processes of hemostasis and thrombosis. Central to their function, the activation of platelets includes a complex interplay of adhesion and signalling molecules mediated via the plasma and inner membrane. Because platelets are enucleated, the analysis of the proteome is the best way to approach their biology. Here, we employ mass spectrometry (MS)-based proteomics to characterise membrane proteins derived from non-stimulated human platelets. This protocol details the extraction and purification of platelet membrane proteins from whole blood using SDS-PAGE in conjunction with LC-MS/MS. This method allowed the identification, and characterization of 207 platelet membrane proteins (PMP) from approximately 9.95 × 109 platelets (16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. George, J. N. (2000). Platelets. Lancet 355, 1531–9.

    Article  CAS  PubMed  Google Scholar 

  2. Jurk, K., and Kehrel, B. E. (2005). Platelets: physiology and biochemistry. Semin Thromb Hemost 31, 381–92.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison, P. (2005). Platelet function analysis. Blood Rev 19, 111–23.

    Article  PubMed  Google Scholar 

  4. Italiano, J. E., Jr. and Shivdasani, R. A. (2003). Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 1, 1174–82.

    Article  CAS  PubMed  Google Scholar 

  5. McRedmond, J. P., et al. (2004). Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3, 133–44.

    CAS  PubMed  Google Scholar 

  6. Garcia, A. (2006). Proteome analysis of signaling cascades in human platelets. Blood Cells Mol Dis 36, 152–156.

    Article  CAS  PubMed  Google Scholar 

  7. Kunicki, T. J. (1989). Platelet membrane glycoproteins and their function: an overview. Blut 59, 30–4.

    Article  CAS  PubMed  Google Scholar 

  8. Fox, J. E., et al. (1993). On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21ras GTPase-activating protein with the membrane skeleton. J Biol Chem 268, 25973–84.

    CAS  PubMed  Google Scholar 

  9. Wu, C. C., and Yates, J. R. 3rd. (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ryningen, A., and Holmsen, H. (1999). Biochemistry of platelet activation, in Handbook of Platelet Physiology and Pharmacology, G.H.R., Editor. Springer–Verlag, pp. 188–237.

    Google Scholar 

  11. Marcus, K., Immler, D., Sternberger, J., and Meyer, H. E. (2000). Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins . Electrophoresis 21, 2622–36.

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill, E. E., Brock, C. J., von Kriegsheim, A. F., Pearce, A. C., Dwek, R. A., Watson, S. P., and Hebestreit, H. F. (2002). Towards complete analysis of the platelet proteome.Proteomics 2, 288–305.

    Article  PubMed  Google Scholar 

  13. Coppinger, J. A., Cagney, G., Toomey, S., Kislinger, T., Belton, O., McRedmond, J. P., Cahill, D. J., Emili, A., Fitzgerald, D. J., and Maguire, P. B. (2004). Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103, 2096–104.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia, A., Prabhakar, S., Brock, C. J., Pearce, A. C., Dwek, R. A., Watson, S. P., Hebestreit, H. F., and Zitzmann, N. (2004). Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 4, 656–68.

    Article  CAS  PubMed  Google Scholar 

  15. Simpson, R. J. (2004). Purifying proteins for proteomics: A laboratory manual, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  16. Glenister, K. M., Kapp, E. A., Moritz, R. L., et al (2008). Comparison of human platelet membrane-cytoskeletal proteins with the plasma proteome: Toward understanding the platelet-plasma nexus. Proteomics: Clinical Applications 2, 63–77.

    Article  CAS  PubMed  Google Scholar 

  17. Hogman, C. F., Eriksson, L., Hedlund, K., and Wallvik, J. (1988). The bottom and top system: a new technique for blood component preparation and storage. Vox Sang 55, 211–7.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenfeld, C. S., Nichols, G., and Bodensteiner, D. C. (1987). Flow cytometric measurement of antiplatelet antibodies.Am J Clin Pathol 87, 518–22.

    CAS  PubMed  Google Scholar 

  19. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250.Electrophoresis 9, 255–62.

    Article  CAS  PubMed  Google Scholar 

  20. Moritz, R. L., Eddes, J. S., Reid, G. E., and Simpson, R. J. (1996). S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine-containing peptides. Electrophoresis 17, 907–17.

    Article  CAS  PubMed  Google Scholar 

  21. White, J. G., and Clawson, C. C. (1980). The surface-connected canalicular system of blood platelets – a fenestrated membrane system. Am J Pathol 101, 353–64.

    CAS  PubMed  Google Scholar 

  22. Ebbeling, L., Robertson, C., McNicol, A., and Gerrard, J. M. (1992). Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood 80, 718–23.

    CAS  PubMed  Google Scholar 

  23. Schiffer, C. A., Anderson, K. C., Bennett, C. L., Bernstein, S., Elting, L. S., Goldsmith, M., Goldstein, M., Hume, H., McCullough, J. J., McIntyre, R. E., Powell, B. L., Rainey, J. M., Rowley, S. D., Rebulla, P., Troner, M. B., and Wagnon, A. H. (2001). Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 19, 1519–38.

    CAS  PubMed  Google Scholar 

  24. Keegan, T., Heaton, A., Holme, S., Owens, M., Nelson, E., and Carmen, R. (1992). Paired comparison of platelet concentrates prepared from platelet-rich plasma and buffy coats using a new technique with 111In and 51Cr. Transfusion 32, 113–20.

    Article  CAS  PubMed  Google Scholar 

  25. Mrowiec, Z. R., Oleksowicz, L., Dutcher, J. P., De Leon-Fernandez, M., Lalezari, P., and Puszkin, E. G. (1995). A novel technique for preparing improved buffy coat platelet concentrates. Blood Cells Mol Dis 21, 25–33.

    Article  CAS  PubMed  Google Scholar 

  26. Simon, T. L. (1994). The collection of platelets by apheresis procedures. Transfus Med Rev 8, 132–45.

    Article  CAS  PubMed  Google Scholar 

  27. Oliver, A. E., Tablin, F., Walker, N. J., and Crowe, J. H. (1999). The internal calcium concentration of human platelets increases during chilling. Biochim Biophys Acta 1416, 349–60.

    Article  CAS  PubMed  Google Scholar 

  28. Tablin, F., Oliver, A. E., Walker, N. J., Crowe, L. M., and Crowe, J. H. (1996). Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Physiol 168, 305–13.

    Article  CAS  PubMed  Google Scholar 

  29. Dzik, S. (1993). Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev 7, 65–77.

    Article  CAS  PubMed  Google Scholar 

  30. Frewin, D. B., Jonsson, J. R., Davis, K. G., Beilby, A. M., Haylock, D. N., Beal, R. W., and Russell, W. J. (1987). Effect of microfiltration on the histamine levels in stored human blood. Vox Sang 52, 191–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kunicki, T. J., Tuccelli, M., Becker, G. A., and Aster, R. H. (1975). A study of variables affecting the quality of platelets stored at “room temperature”. Transfusion 15, 414–21.

    Article  CAS  PubMed  Google Scholar 

  32. Handin, R. I., and Valeri, C. R. (1971). Hemostatic effectiveness of platelets stored at 22 degrees C. N Engl J Med 285, 538–43.

    Article  CAS  PubMed  Google Scholar 

  33. Becker, G. A., Tuccelli, M., Kunicki, T., Chalos, M. K., and Aster, R. H. (1973). Studies of platelet concentrates stored at 22 C and 4 C. Transfusion 13, 61–8.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy, S., Kahn, R. A., Holme, S., Phillips, G. L., Sherwood, W., Davisson, W., and Buchholz, D. H. (1982). Improved storage of platelets for transfusion in a new container. Blood 60, 194–200.

    CAS  PubMed  Google Scholar 

  35. Heal, J. M., Singal, S., Sardisco, E., and Mayer, T. (1986). Bacterial proliferation in platelet concentrates. Transfusion 26, 388–90.

    Article  CAS  PubMed  Google Scholar 

  36. Braine, H. G., Kickler, T. S., Charache, P., Ness, P. M., Davis, J., Reichart, C., and Fuller, A. K. (1986). Bacterial sepsis secondary to platelet transfusion: an adverse effect of extended storage at room temperature. Transfusion 26, 391–3.

    Article  CAS  PubMed  Google Scholar 

  37. Schiffer, C. A., Lee, E. J., Ness, P. M., and Reilly, J. (1986). Clinical evaluation of platelet concentrates stored for one to five days. Blood 67, 1591–4.

    CAS  PubMed  Google Scholar 

  38. Bode, A. P. (1990). Platelet activation may explain the storage lesion in platelet concentrates. Blood Cells 16, 109–25; discussion 125–6.

    CAS  PubMed  Google Scholar 

  39. Murphy, S., and Gardner, F. H. (1975). Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood 46, 209–18.

    CAS  PubMed  Google Scholar 

  40. Murphy, S., Rebulla, P., Bertolini, F., Holme, S., Moroff, G., Snyder, E., and Stromberg, R. (1994). In vitro assessment of the quality of stored platelet concentrates. The BEST (Biomedical Excellence for Safer Transfusion) Task Force of the International Society of Blood Transfusion. Transfus Med Rev 8, 29–36.

    Article  CAS  PubMed  Google Scholar 

  41. Shattil, S. J., Cunningham, M., and Hoxie, J. A. (1987). Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70, 307–15.

    CAS  PubMed  Google Scholar 

  42. Wang, C., Mody, M., Herst, R., Sher, G., and Freedman, J. (1999). Flow cytometric analysis of platelet function in stored platelet concentrates. Transfus Sci 20, 129–39.

    Article  CAS  PubMed  Google Scholar 

  43. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., and Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791–9.

    CAS  PubMed  Google Scholar 

  44. Tandon, N. N., Lipsky, R. H., Burgess, W. H., and Jamieson, G. A. (1989). Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 264, 7570–5.

    CAS  PubMed  Google Scholar 

  45. Aster, R. H. (1972). Platelet sequestration studies in man. Br J Haematol 22, 259–63.

    Article  CAS  PubMed  Google Scholar 

  46. Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000). Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21, 1707–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greening, D.W., Glenister, K.M., Sparrow, R.L., Simpson, R.J. (2009). Enrichment of Human Platelet Membranes for Proteomic Analysis. In: Peirce, M.J., Wait, R. (eds) Membrane Proteomics. Methods in Molecular Biology™, vol 528. Humana Press. https://doi.org/10.1007/978-1-60327-310-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-310-7_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-309-1

  • Online ISBN: 978-1-60327-310-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics