Skip to main content

Trace Elements and Immune Function

  • Chapter
  • First Online:
Dietary Components and Immune Function

Part of the book series: Nutrition and Health ((NH))

  • 2123 Accesses

Key Points

Trace elements are essential nutrients that are required in minute quantities to support the optimal function of an organism. This chapter reviews the role of four trace elements, including copper, iron, selenium, and zinc in immune function. Each of these trace elements has a function in both the innate and acquired immune system.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army or the Department of Defense. Any citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement of approval of the products or services of these organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowen HJM (1966) Trace elements in biochemistry. Academic, New York

    Google Scholar 

  2. Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51:301–323

    Article  PubMed  CAS  Google Scholar 

  3. Failla ML (2003) Trace elements and host defense: recent advances and continuing challenges. J Nutr 133:1443S–1447S

    PubMed  CAS  Google Scholar 

  4. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Phys Rev 73:79–118

    Article  CAS  Google Scholar 

  5. Cordano A, Baertl JM, Graham G (1964) Copper deficiency in humans. Annu Rev Nutr 34:324–326

    CAS  Google Scholar 

  6. Williams D (1983) Copper deficiency in humans. Semin Hematol 20:118–128

    PubMed  CAS  Google Scholar 

  7. Percival SS (1995) Neutropenia caused by copper deficiency: possible mechanisms of action. Nutr Rev 53:59–66

    Article  PubMed  CAS  Google Scholar 

  8. Higuchi S, Higashi A, Nakamura T, Yanabe Y, Matsuda I (1991) Anti-neutrophil antibodies in patients with nutritional copper deficiency. J Pediatr 150:327–330

    CAS  Google Scholar 

  9. Babu U, Failla ML (1990) Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper deficient rats. J Nutr 120:1692–1699

    PubMed  CAS  Google Scholar 

  10. Hopkins RG, Failla ML (1995) Chronic intake of a marginally low copper diet impairs in vitro activities of lymphocytes and neutrophils from male rats despite minimal impact on conventional indicators of copper status. J Nutr 125:2658–2668

    PubMed  CAS  Google Scholar 

  11. Arias VJ, Koutsos EA (2006) Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poult Sci 85:999–1007

    PubMed  CAS  Google Scholar 

  12. Lukasewycz OA, Prohaska JR (1990) The immune response in copper deficiency. Ann NY Acad Sci 587:147–159

    PubMed  CAS  Google Scholar 

  13. Koller LD, Mulhern SA, Frankel NC, Steven MG, Williams JR (1987) Immune dysfunction in rats fed a diet deficient in copper. Am J Clin Nutr 45:997–1006

    PubMed  CAS  Google Scholar 

  14. Bonham M, O’Conner JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status. Br J Nutr 87:393–403

    Article  PubMed  CAS  Google Scholar 

  15. Heresi G, Castillo-Duran C, Munoz C, Arevalo M, Schlesinger L (1985) Phagocytosis and immunoglobulin levels in hypocupremic infants. Nutr Res 5:1327–1334

    Article  Google Scholar 

  16. Kelley DS, Daudu PA, Taylor PC, Mackey BE, Turnlund JR (1995) Effects of low copper diets on human immune response. Am J Clin Nutr 62:412–416

    PubMed  CAS  Google Scholar 

  17. Chandra RK (1973) Reduced bactericidal capacity of polymorphs in iron deficiency. Arch Dis Child 48:864–866

    Article  PubMed  CAS  Google Scholar 

  18. Brock JH, Mulero V (2000) Cellular and molecular aspects of iron and immune function. Proc Nutr Soc 59:537–540

    Article  PubMed  CAS  Google Scholar 

  19. Ahluwalia N, Sun J, Krause D, Mastro A, Handte G (2004) Immune function is impaired in iron-deficient home-bound, older women. Am J Clin Nutr 79:516–521

    PubMed  CAS  Google Scholar 

  20. Oppenheimer SJ, Gibson FD, Macfarlane SBJ, Moody JB, Harrison C, Spencer A, Bunari O (1986) Iron supplementation increases prevalence and effects of malaria. Report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg 80:603–612

    Article  PubMed  CAS  Google Scholar 

  21. Oppenheimer SJ, Macfarlane SBJ, Moody JB, Bunari O, Hendrickse RG (1986) Effect of iron prophylaxis on morbidity due to infectious disease. Report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg 80:596–602

    Article  PubMed  CAS  Google Scholar 

  22. Smith AW, Hendrickse RG, Harrison C, Hayes RJ, Greenwood BM (1989) The effects of malaria on treatment of iron-deficiency anaemia with oral iron in Gambian children. Ann Trop Paediatr 9:17–23

    PubMed  CAS  Google Scholar 

  23. Murray MJ, Murray AB, Murray MB, Murray CJ (1978) The adverse effect of iron repletion on the course of certain infections. Br Med J 2:1113–1115

    Article  PubMed  CAS  Google Scholar 

  24. McDermid JM, Prentice AM (2006) Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMPI (SLCIIAI) on host-pathogen interactions in tuberculosis and HIV. Clin Sci 110:503–524

    Article  PubMed  CAS  Google Scholar 

  25. Fritsche G, Larcher C, Schennach H, Weiss G (2001) Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. J Infect Dis 183:1388–1394

    Article  PubMed  CAS  Google Scholar 

  26. Oppenheimer SJ (2001) Iron and its relation to immunity and infectious disease. J Nutr 131:616S–635S

    PubMed  CAS  Google Scholar 

  27. Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Invest 32:70–78

    Article  PubMed  CAS  Google Scholar 

  28. Markel TA, Crisostomo PR, Wang M, Herring CM, Meldrum KK, Lillemoe KD, Meldrum DR (2007) The struggle for iron: gastrointestinal microbes modulate the host immune response during infection. J Leukoc Biol 81:393–400

    Article  PubMed  CAS  Google Scholar 

  29. Pieracci FM, Barie PS (2005) Iron and the risk of infection. Surg Infect 6:S41–S46

    Article  Google Scholar 

  30. Radtke AL, O’Riordan X (2006) Intracellular innate resistance to bacterial pathogens. Cell Microbiol 8:1720–1729

    Article  PubMed  CAS  Google Scholar 

  31. Lei XG, Cheng WH, McClung JP (2007) Metabolic regulation and function of glutathione-peroxidase-1. Annu Rev Nutr 27:41–61

    Article  PubMed  CAS  Google Scholar 

  32. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S

    PubMed  CAS  Google Scholar 

  33. Cao YZ, Maddox JF, Mastro AM, Scholz RW, Hildenbrandt G, Reddy CC (1992) Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. J Nutr 122:2121–2127

    PubMed  CAS  Google Scholar 

  34. Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshev VN, Park JM, Hatfield DL (2008) Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem 283:20181–20185

    Article  PubMed  CAS  Google Scholar 

  35. Su C, Gong C, Li Q, Chen L, Zhou D, Jin Q (1979) Preliminary results of viral etiology of Keshan disease. Chin Med J 59:466–472

    Google Scholar 

  36. Beck MA, Kolbeck PC, Rorh LH, Shi Q, Morris VC, Levander OA (1994) Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol 43:166–170

    Article  PubMed  CAS  Google Scholar 

  37. Beck MA, Shi Q, Morris VC, Levander OA (1995) Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1:433–436

    Article  PubMed  CAS  Google Scholar 

  38. Beck MA, Esworthy RS, Ho Y-S, Chu F-F (1998) Glutathione peroxidase protects mice from viral induced myocarditis. FASEB J 12:1143–1149

    PubMed  CAS  Google Scholar 

  39. Sepulveda RT, Zhang J, Watson RR (2002) Selenium supplementation decreases coxsackievirus heart disease during murine AIDS. Cardiovasc Toxicol 2:53–61

    Article  PubMed  CAS  Google Scholar 

  40. Beck MA, Nelson HK, Shi Q, Van Dael P, Schriffin EJ, Blum S, Barclay D, Levandar OA (2001) Selenium deficiency increases the pathology of an influenza virus infection. FASEB J 15:1481–1483

    PubMed  CAS  Google Scholar 

  41. Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, Hart CA, Arthur JR, Jackson MJ (2004) An increase in selenium uptake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr 80:154–162

    PubMed  CAS  Google Scholar 

  42. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G (1994) Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol Trace Elem Res 41:115–127

    Article  PubMed  CAS  Google Scholar 

  43. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G (1994) Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol Trace Elem Res 46:3–14

    Article  Google Scholar 

  44. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    Article  PubMed  CAS  Google Scholar 

  45. Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56:S20–S23

    Article  PubMed  CAS  Google Scholar 

  46. Allen JL, Perri RT, McClain CJ, Kay NE (1983) Alterations in human natural killer cell activity and monocyte cytotoxicity induced by zinc deficiency. J Lab Clin Med 102:577–589

    PubMed  CAS  Google Scholar 

  47. Ibs K-H, Rink L (2003) Zinc-altered immune function. J Nutr 133:1452S–1456S

    PubMed  CAS  Google Scholar 

  48. Ravaglia G, Fort P, Maioli F, Bastagali L, Facchini A, Erminia M, Savarino L, Sassi S, Cucinotta D, Lenaz G (2000) Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects ≥90 y. Am J Clin Nutr 71:590–598

    PubMed  CAS  Google Scholar 

  49. Dowd PS, Kelleher J, Guillou PJ (1986) T-lymphocyte subsets and interleukin-2 production in zinc-deficient rats. Br J Nutr 55:59–69

    Article  PubMed  CAS  Google Scholar 

  50. Mocchegiani E, Santarelli L, Muzzioli M, Fabris N (1995) Reversibility of thymic involution and age-related peripheral immune dysfunction by zinc supplementation in old mice. Int J Immunopharmacol 17:703–718

    Article  PubMed  CAS  Google Scholar 

  51. Depasquale-Jardieu P, Fraker PJ (1984) Interference in the development of a secondary immune response in mice by zinc deprivation: persistence on effects. J Nutr 114:1762–1769

    PubMed  CAS  Google Scholar 

  52. Brooks WA, Santosham M, Naheed A, Goswami D, Waheed MA, Diener-West M, Faruque ASG, Black RE (2005) Effect of weekly zinc supplements on incidence of pneumonia and diarrhea in children younger than 2 years in an urban, low-income population in Bangladesh: randomized controlled trial. Lancet 366:999–1004

    Article  PubMed  CAS  Google Scholar 

  53. Prasad AS, Beck WJ, Kaplan J, Chandrasekar PH, Ortega J, Fitzgerald JT, Swerdlow P (1999) Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD). Am J Hematol 61:194–202

    Article  PubMed  CAS  Google Scholar 

  54. Marshall I (1999) Zinc for the common cold. Cochrane Database Syst Rev 2:CD001364

    Google Scholar 

  55. Beck MA (2007) Selenium and vitamin E status: impact on viral pathogenicity. J Nutr 137:1338–1340

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. McClung PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McClung, J.P., Peterson, D.G. (2010). Trace Elements and Immune Function. In: Watson, R., Zibadi, S., Preedy, V. (eds) Dietary Components and Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-061-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-061-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-060-1

  • Online ISBN: 978-1-60761-061-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics