Skip to main content

Proteases in Diabetic Retinopathy

  • Chapter
  • First Online:
Visual Dysfunction in Diabetes

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1018 Accesses

Abstract

The human retinal structure along with the neuronal component develops from a single layer of undifferentiated neuroepithelial cells during embryonic ontogenesis. During this process, retinal vasculature develops to form an elaborate vascular tree that matches the metabolic need of tissues. Retinal vascular development involves a complex process of vasculogenesis and angiogenesis. Vasculogenesis describes the de novo formation of vessels from vascular endothelial precursor cells (angioblasts), which migrate to or differentiate at the location of future vessels, coalesce into cords, and differentiate into endothelial cells leading to the formation of ultimate vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fruttiger M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci. 2002;43:522–7.

    PubMed  Google Scholar 

  2. Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res. 2003;22:721–48.

    Article  PubMed  CAS  Google Scholar 

  3. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin ­systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17.

    Article  PubMed  CAS  Google Scholar 

  4. Nielsen LS et al. Purification of zymogen to plasminogen activator from human glioblastoma cells by affinity chromatography with monoclonal antibody. Biochemistry. 1982;21:6410–5.

    Article  PubMed  CAS  Google Scholar 

  5. Quax P, van Muijen G, Weening-Verhoeff E, et al. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase type plasminogen activator, its type inhibitor, urokinase-mediated matrix degradation. J Cell Biol. 1991;115:191–9.

    Article  PubMed  CAS  Google Scholar 

  6. Manchanda N, Schwartz BS. Single chain urokinase: augmentation of enzymatic activity upon binding to monocytes. J Biol Chem. 1991;266:14580–4.

    PubMed  CAS  Google Scholar 

  7. Rabbani SA, Desjardins J, Bell AW, et al. An amino terminal fragment of urokinase isolated from a prostate cancer cell line is mitogenic for osteoblast-like cells. Biochem Biophys Res Commun. 1990;173:1058–64.

    Article  PubMed  CAS  Google Scholar 

  8. Blasi R. Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioassays. 1993;15:105–11.

    Article  CAS  Google Scholar 

  9. Blasi F, Carmeliet P. uPA: a versatile signaling orchestrator. Nat Rev Mol Cell Biol. 2002;3:931–43.

    Article  Google Scholar 

  10. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992;267:26031–7.

    PubMed  CAS  Google Scholar 

  11. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11:23–36.

    Article  PubMed  CAS  Google Scholar 

  12. Ploug M, Ellis V. Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom α-neurotoxins. FEBS Lett. 1994;349:163–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kjaergaard M, Hansen LV, Jacobsen B, Gardsvoll H, Ploug M. Structure and ligand interactions of the urokinase receptor (uPAR). Front Biosci. 2008;13:5441–61.

    Article  PubMed  CAS  Google Scholar 

  14. Huai Q et al. Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. Nat Struct Mol Biol. 2008;15:422–3.

    Article  PubMed  CAS  Google Scholar 

  15. Huai Q et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science. 2006;311:656–9.

    Article  PubMed  CAS  Google Scholar 

  16. Llinas P et al. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide. EMBO J. 2005;24:1655–63.

    Article  PubMed  CAS  Google Scholar 

  17. Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res. 2008;14:5649–55.

    Article  PubMed  CAS  Google Scholar 

  18. Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis and angiogenesis. Surg Oncol Clin N Am. 2001;10:383–92.

    PubMed  CAS  Google Scholar 

  19. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000;149:1309–23.

    Article  PubMed  CAS  Google Scholar 

  20. Sato H, Okada Y, Seiki M. Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thromb Haemost. 1997;78:497–500.

    PubMed  CAS  Google Scholar 

  21. Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 1998;12:1075–95.

    PubMed  CAS  Google Scholar 

  22. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997;91:439–42.

    Article  PubMed  CAS  Google Scholar 

  23. Werb Z, Vu TH, Rinkenberger JL, Coussens LM. Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS. 1999;107(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  24. Nagase H, Woessner Jr JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–4.

    Article  PubMed  CAS  Google Scholar 

  25. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    Article  PubMed  CAS  Google Scholar 

  26. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem. 2002;277:9749–56.

    Article  PubMed  CAS  Google Scholar 

  27. Xu J et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol. 2001;154:1069–79.

    Article  PubMed  CAS  Google Scholar 

  28. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen M, Arkell J, Jackson CJ. Human endothelial gelatinases and angiogenesis. Int J ­Biochem Cell Biol. 2001;33:960–70.

    Article  PubMed  CAS  Google Scholar 

  30. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell. 1998;95:365–77.

    Article  PubMed  CAS  Google Scholar 

  31. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene. 2002;21:272–81.

    Article  PubMed  CAS  Google Scholar 

  32. Herren B, Levkau B, Raines EW, Ross R. Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell. 1998;9:1589–601.

    PubMed  CAS  Google Scholar 

  33. Zaragoza C et al. Activation of the mitogen-activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol Pharmacol. 2002;62:927–35.

    Article  PubMed  CAS  Google Scholar 

  34. Zaragoza C, Balbín M, López-Otín C, Lamas S. Nitric oxide regulates matrix metalloprotease-13 expression and activity in endothelium. Kidney Int. 2002;61:804–8.

    Article  PubMed  CAS  Google Scholar 

  35. Mohan R et al. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem. 2000;275:10405–12.

    Article  PubMed  CAS  Google Scholar 

  36. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7:165–97.

    Article  PubMed  CAS  Google Scholar 

  37. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77:527–43.

    Article  PubMed  CAS  Google Scholar 

  38. Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells:differential regulation by inflammatory cytokines. Blood. 2007;109:4055–63.

    Article  PubMed  CAS  Google Scholar 

  39. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem. 2002;277:36288–95.

    Article  PubMed  CAS  Google Scholar 

  40. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J. 1997;322:809–14.

    PubMed  CAS  Google Scholar 

  41. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–76.

    PubMed  Google Scholar 

  42. Slansky HH, Freeman MI, Itoi M. Collagenolytic activity in bovine corneal epithelium. Arch Ophthalmol. 1968;80:496–8.

    Article  PubMed  CAS  Google Scholar 

  43. Plantner JJ, Jiang C, Smine A. Increase in interphotoreceptor matrix gelatinase a (MMP-2) associated with age-related macular degeneration. Exp Eye Res. 1998;67:637–45.

    Article  PubMed  CAS  Google Scholar 

  44. Brown D, Hamdi H, Bahri S, Kenney MC. Characterization of an endogenous metalloproteinase in human vitreous. Curr Eye Res. 1994;13:639–47.

    Article  PubMed  CAS  Google Scholar 

  45. Das A, McLamore A, Song W, McGuire PG. Retinal neovascularization is suppressed with a matrix metalloproteinase inhibitor. Arch Ophthalmol. 1999;117:498–503.

    PubMed  CAS  Google Scholar 

  46. Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 2000;118:666–73.

    PubMed  CAS  Google Scholar 

  47. Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci. 2000;41:3299–304.

    PubMed  CAS  Google Scholar 

  48. Webster L, Chignell AH, Limb GA. Predominance of MMP-1 and MMP-2 in epiretinal and subretinal membranes of proliferative vitreoretinopathy. Exp Eye Res. 1999;68:91–8.

    Article  PubMed  CAS  Google Scholar 

  49. Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT. A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1998;39:1524–9.

    PubMed  CAS  Google Scholar 

  50. Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21:1–14.

    Article  PubMed  CAS  Google Scholar 

  51. Salzmann J et al. Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol. 2000;84:1091–6.

    Article  PubMed  CAS  Google Scholar 

  52. Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res. 2001;64:523–32.

    Article  PubMed  CAS  Google Scholar 

  53. Ahir A, Guo L, Hussain AA, Marshall J. Expression of metalloproteinases from human retinal pigment epithelial cells and their effects on the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci. 2002;43:458–65.

    PubMed  Google Scholar 

  54. Limb GA et al. Differential expression of matrix metalloproteinases 2 and 9 by glial Müller cells: response to soluble and extracellular matrix-bound tumor necrosis factor-alpha. Am J Pathol. 2002;160:1847–55.

    Article  PubMed  CAS  Google Scholar 

  55. De La Paz MA, Itoh Y, Toth CA, Nagase H. Matrix metalloproteinases and their inhibitors in human vitreous. Invest Ophthalmol Vis Sci. 1998;39:1256–60.

    Google Scholar 

  56. Xie B et al. An Adam15 amplification loop promotes vascular endothelial growth factor-induced ocular neovascularization. FASEB J. 2008;22:2775–83.

    Article  PubMed  CAS  Google Scholar 

  57. Baramova E, Foidart JM. Matrix metalloproteinase family. Cell Biol Int. 1995;19:239–42.

    PubMed  CAS  Google Scholar 

  58. Weber BHF, Vogt G, Pruett RC, et al. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP-3) in patients with Sorsby’s fundus dystrophy. Nat Genet. 1994;8:352–6.

    Article  PubMed  CAS  Google Scholar 

  59. Farris RN, Apte SS, Luhert PJ, et al. Accumulations of tissue inhibitor metalloproteinases-3 in human eyes with Sorsby’s fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol. 1998;82:1329–34.

    Article  Google Scholar 

  60. Oh J et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107:789–800.

    Article  PubMed  CAS  Google Scholar 

  61. Cawston TE, Mercer E. Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue inhibitor of metalloproteinases. FEBS Lett. 1986;209:9–12.

    Article  PubMed  CAS  Google Scholar 

  62. Herman MP et al. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest. 2001;107:1117–26.

    Article  PubMed  CAS  Google Scholar 

  63. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol. 1990;68:1–19.

    Article  PubMed  CAS  Google Scholar 

  64. Ye S, Goldsmith EJ. Serpins and other covalent protease inhibitors. Curr Opin Struct Biol. 2001;11:740–5.

    Article  PubMed  CAS  Google Scholar 

  65. Thorgeirson UP, Linsay CK, Cottam DW, Gomez DE. Tumor invasion, proteolysis, angiogenesis. J Neurooncol. 1994;18:89–103.

    Article  Google Scholar 

  66. Beránek M et al. Genetic variations and plasma levels of gelatinase A (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol Vis. 2008;14:1114–21.

    PubMed  Google Scholar 

  67. Ishizaki E et al. Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy. Am J Ophthalmol. 2006;141:129–34.

    Article  PubMed  CAS  Google Scholar 

  68. Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA, et al. Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: implications for structural differences in macular profiles. Exp Eye Res. 2006;82:798–806.

    Article  PubMed  CAS  Google Scholar 

  69. Jin M, Kashiwagi K, Iizuka Y, Tanaka Y, Imai M, Tsukahara S. Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina. 2001;21:28–33.

    Article  PubMed  CAS  Google Scholar 

  70. Salzmann J et al. Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol. 2000;84:1091–6.

    Article  PubMed  CAS  Google Scholar 

  71. Kosano H et al. ProMMP-9 (92 kDa gelatinase) in vitreous fluid of patients with proliferative diabetic retinopathy. Life Sci. 1999;64:2307–15.

    Article  PubMed  CAS  Google Scholar 

  72. Das A, McGuire PG, Eriqat C, et al. Human diabetic neovascular membranes contain high levels of urokinase and metalloproteinase enzymes. Invest Ophthalmol Vis Sci. 1999;40:809–13.

    PubMed  CAS  Google Scholar 

  73. Noda K et al. Production and activation of matrix metalloproteinase-2 in proliferative ­diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44:2163–70.

    Article  PubMed  Google Scholar 

  74. Ohno-Matsui K et al. Reduced retinal angiogenesis in MMP-2-deficient mice. Invest ­Ophthalmol Vis Sci. 2003;44:5370–5.

    Article  PubMed  Google Scholar 

  75. Jacqueminet S et al. Elevated circulating levels of matrix metalloproteinase-9 in type 1 ­diabetic patients with and without retinopathy. Clin Chim Acta. 2006;367:103–7.

    Article  PubMed  CAS  Google Scholar 

  76. Kowluru RA, Kanwar M. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2. Free Radic Biol Med. 2009;46:1677–85.

    Article  PubMed  CAS  Google Scholar 

  77. Kowluru RA, Kanwar M. Translocation of H-Ras and its implications in the development of diabetic retinopathy. Biochem Biophys Res Commun. 2009;387:461–6.

    Article  PubMed  CAS  Google Scholar 

  78. Tarallo S, Beltramo E, Berrone E, Dentelli P, Porta M. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol. 2010;47(2):105–11.

    Article  PubMed  CAS  Google Scholar 

  79. Sánchez MC et al. Effect of retinal laser photocoagulation on the activity of metalloproteinases and the alpha(2)-macroglobulin proteolytic state in the vitreous of eyes with proliferative diabetic retinopathy. Exp Eye Res. 2007;85:644–50.

    Article  PubMed  Google Scholar 

  80. Zhang G, Fahmy RG, diGirolamo N, Khachigian LM. JUN siRNA regulates matrix metalloproteinase-2 expression, microvascular endothelial growth and retinal neovascularisation. J Cell Sci. 2006;119:3219–26.

    Article  PubMed  CAS  Google Scholar 

  81. Iwai S et al. Activation of AP-1 and increased synthesis of MMP-9 in the rabbit retina induced by lipid hydroperoxide. Curr Eye Res. 2006;31:337–46.

    Article  PubMed  CAS  Google Scholar 

  82. Hattenbach LO, Allers A, Gümbel HO, Scharrer I, Koch FH. Vitreous concentrations of TPA and plasminogen activator inhibitor are associated with VEGF in proliferative diabetic vitreoretinopathy. Retina. 1999;19:383–9.

    Article  PubMed  CAS  Google Scholar 

  83. Grant MB, Guay C. Plasminogen activator production by human retinal endothelial cells of nondiabetic and diabetic origin. Invest Ophthalmol Vis Sci. 1991;32:53–64.

    PubMed  CAS  Google Scholar 

  84. McGuire PG, Jones TR, Talarico N, et al. The urokinase/urokinase receptor system in retinal neovascularization: inhibition by A6 suggests a new therapeutic target. Invest Ophthalmol Vis Sci. 2003;44:2736–42.

    Article  PubMed  Google Scholar 

  85. Majka S, McGuire PG, Colombo S, Das A. The balance between proteinases and inhibitors in a murine model of proliferative retinopathy. Invest Ophthalmol Vis Sci. 2001;42:210–5.

    PubMed  CAS  Google Scholar 

  86. Le Gat L, Gogat K, Bouquet C, et al. In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy. Gene Ther. 2003;10:2098–103.

    Article  PubMed  Google Scholar 

  87. Jin M, Kashiwagi K, Iizuka Y, Tanaka Y, Imai M, Tsukahara S. Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina. 2001;21(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  88. Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 2005;85(5):597–607.

    Article  PubMed  CAS  Google Scholar 

  89. Navaratna D, McGuire PG, Menicucci G, Das A. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes. 2007;56:2380–7.

    Article  PubMed  CAS  Google Scholar 

  90. Behzadian MA, Wang XL, Windsor LJ, et al. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci. 2001;42:853–9.

    PubMed  CAS  Google Scholar 

  91. Navaratna D, Menicucci G, Maestas J, Srinivasan R, McGuire P, Das A. A peptide inhibitor of the urokinase/urokinase receptor system inhibits alteration of the blood-retinal barrier in diabetes. FASEB J. 2008;22:3310–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported by NIH Grant RO1 EY 12604 and Juvenile Diabetes Research Foundation (JDRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rangasamy, S., McGuire, P., Das, A. (2012). Proteases in Diabetic Retinopathy. In: Tombran-Tink, J., Barnstable, C., Gardner, T. (eds) Visual Dysfunction in Diabetes. Ophthalmology Research. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-150-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-150-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-149-3

  • Online ISBN: 978-1-60761-150-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics