Skip to main content

Environmental Enrichment and Gene–Environment Interactions in Mouse Models of Brain Disorders

  • Protocol
  • First Online:
Transgenic and Mutant Tools to Model Brain Disorders

Part of the book series: Neuromethods ((NM,volume 44))

Abstract

Environmental enrichment studies of transgenic and mutant mouse models of brain disorders have facilitated exploration of gene × environment interactions and experience-dependent plasticity in response to enhanced mental and physical activity. Environmental enrichment was first shown to have beneficial effects in a transgenic mouse model of Huntington’s disease, followed by models of Alzheimer’s disease and other neurodegenerative disorders, as well as various neurodevelopmental and psychiatric disorders, including Rett syndrome and schizophrenia. Research involving mouse models of these various brain disorders has generally shown that environmental enrichment ameliorates brain dysfunction and associated behavioral signs, although the extent of beneficial effects may depend both on the specific model and the exact nature of the environmental manipulation. In some cases, specific cellular changes, such as enhancement of cortical synaptogenesis and hippocampal neurogenesis, and molecular changes, such as upregulation of specific neurotrophic factors and synaptic proteins, have been observed. These demonstrations of gene × environment interactions in mouse models, together with epidemiological studies, suggest that therapy based on elevated levels of mental and physical activity might benefit those at risk of, or suffering from, these brain disorders. Furthermore, environmental manipulations of these transgenic and mutant models provide insight into possible pathogenic mechanisms and may facilitate identification of novel molecular targets for therapeutic drugs (“enviromimetics”), which mimic or enhance the beneficial effects of environmental stimulation. Finally, these findings reinforce the concept that construct validity must not only be achieved at the level of genetic and molecular mediators, but should also encompass environmental modifiers, such as mental and physical activity levels, to ensure optimization of valid models that lead to successful clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697-709

    Article  CAS  PubMed  Google Scholar 

  2. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191-198

    Article  PubMed  Google Scholar 

  3. Grote HE, Hannan AJ (2007) Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34:533-545

    Article  CAS  PubMed  Google Scholar 

  4. Laviola G, Hannan AJ, Macrì S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative and psychiatric disorders. Neurobiol Dis 31:159-168

    Article  PubMed  Google Scholar 

  5. Nithianantharajah J, Hannan AJ (2007) Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. Bioessays 29:525-535

    Article  CAS  PubMed  Google Scholar 

  6. Bates G, Harper PS, Jones L (eds) (2002) Huntington’s disease, 3rd edn. Oxford University Press, Oxford, England

    Google Scholar 

  7. Feigen VL, Bennett DA (2007) Handbook of clinical neuroepidemiology. Nova Science Publishers, New York, USA

    Google Scholar 

  8. van Dellen A, Blakemore C, Deacon R et al (2000) Delaying the onset of Huntington’s in mice. Nature 404:721-722

    Article  PubMed  Google Scholar 

  9. Hockly E, Cordery P, Woodman B et al (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51:235-242

    Article  PubMed  Google Scholar 

  10. Spires TL, Grote HE, Varshney NK et al (2004) EE rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270-2276

    Article  CAS  PubMed  Google Scholar 

  11. Spires TL, Grote HE, Garry S et al (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799-2807

    Article  PubMed  Google Scholar 

  12. Glass M, van Dellen A, Blakemore C et al (2004) Delayed onset of Huntington’s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 123:207-212

    Article  CAS  PubMed  Google Scholar 

  13. Schilling G et al (2004) Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp Neurol 187:137-149

    Article  CAS  PubMed  Google Scholar 

  14. Nithianantharajah AJ, Barkus C, Murphy M, Hannan AJ (2008) Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington’s disease transgenic mice. Neurobiol Dis 29:490-504

    Article  CAS  PubMed  Google Scholar 

  15. Pang TYC, Du X, Zajac MS et al (2009) Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet 18:753-766

    Article  CAS  PubMed  Google Scholar 

  16. Lazic SE, Grote H, Armstrong RJ et al (2004) Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport 15:811-813

    Article  PubMed  Google Scholar 

  17. Grote HE, Bull ND, Howard ML et al (2005) Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci 22:2081-2088

    Article  PubMed  Google Scholar 

  18. Pang TY, Stam NC, Nithianantharajah J et al (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience 141:569-584

    Article  CAS  PubMed  Google Scholar 

  19. Lazic SE, Grote HE, Blakemore C et al (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur J Neurosci 23:1829-1838

    Article  PubMed  Google Scholar 

  20. Nithianantharajah J, Vijiaratnam N, Barkus C, et al (2009) Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington’s disease transgenic mice. Am J Ger Psychiatry 17:196-209

    Google Scholar 

  21. van Dellen A, Cordery PM, Spires TL et al (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34

    Article  PubMed  Google Scholar 

  22. Wexler NS, Lorimer J, Porter J et al (2004) U.S.-Venezuela Collaborative Research Project. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 101:3498-3503

    Article  CAS  PubMed  Google Scholar 

  23. Masters CL, Cappai R, Barnham KJ, Villemagne VL (2006) Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem 97:1700-1725

    Article  CAS  PubMed  Google Scholar 

  24. Levi O, Jongen-Relo AL, Feldon J et al (2003) ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol Dis 13:273-282

    Article  CAS  PubMed  Google Scholar 

  25. Jankowsky JL, Xu G, Fromholt D et al (2003) Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Neuropathol Exp Neurol 62:1220-1227

    CAS  PubMed  Google Scholar 

  26. Arendash GW, Garcia MF, Costa DA et al (2004) Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport 15:1751-1754

    Article  PubMed  Google Scholar 

  27. Jankowsky JL, Melnikova T, Fadale DJ et al (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 25:5217-5224

    Article  CAS  PubMed  Google Scholar 

  28. Lazarov O, Robinson J, Tang YP et al (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701-713

    Article  CAS  PubMed  Google Scholar 

  29. Spires TL, Hannan AJ (2007) Molecular mechanisms mediating pathological plasticity in Huntington’s disease and Alzheimer’s disease. J Neurochem 100:874-882

    Article  CAS  PubMed  Google Scholar 

  30. Feng R et al (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911-926

    Article  CAS  PubMed  Google Scholar 

  31. Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25:4217-4221

    Article  CAS  PubMed  Google Scholar 

  32. Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81-104

    Article  CAS  PubMed  Google Scholar 

  33. Spires TL, Hannan AJ (2005) Nature, nurture and neurology: gene-environment interactions in neurodegeneration. FEBS J 272:2347-2361

    Article  CAS  PubMed  Google Scholar 

  34. Valenzuela MJ, Sachdev P (2006) Brain reserve and dementia: a systematic review. Psychol Med 36:441-454

    Article  PubMed  Google Scholar 

  35. Turner BJ, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 85:94-134

    Article  CAS  PubMed  Google Scholar 

  36. Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT (2003) Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis. Ann Neurol 53:804-807

    Article  PubMed  Google Scholar 

  37. Veldink JH et al (2003) Sexual differences in onset of disease and response to exercise in a transgenic model of ALS. Neuromuscul Disord 13:737-743

    Article  CAS  PubMed  Google Scholar 

  38. Mahoney DJ, Rodriguez C, Devries M et al (2004) Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle Nerve 29:656-662

    Article  PubMed  Google Scholar 

  39. Kaspar BK, Frost LM, Christian L et al (2005) Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol 57:649-655

    Article  CAS  PubMed  Google Scholar 

  40. Liebetanz D, Hagemann K, von Lewinski F et al (2004) Extensive exercise is not harmful in amyotrophic lateral sclerosis. Eur J Neurosci 20:3115-3120

    Article  PubMed  Google Scholar 

  41. Stam N, Nithianantharajah J, Howard ML et al (2008) Sex-specific behavioural effects of environmental enrichment in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 28:717-723

    Article  PubMed  Google Scholar 

  42. Williamson SL, Christodoulou J (2006) Rett syndrome: new clinical and molecular insights. Eur J Hum Genet 14:896-903

    Article  CAS  PubMed  Google Scholar 

  43. Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185-188

    Article  CAS  PubMed  Google Scholar 

  44. Bienvenu T, Chelly J (2006) Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 7:415-426

    Article  CAS  PubMed  Google Scholar 

  45. Guy J, Gan J, Selfridge J et al (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143-1147

    Article  CAS  PubMed  Google Scholar 

  46. Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci USA 104:1931-1936

    Article  CAS  PubMed  Google Scholar 

  47. Pelka GJ, Watson CM, Radziewic T et al (2006) Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129:887-898

    Article  PubMed  Google Scholar 

  48. Kondo M, Gray L, Pelka GJ, Christodoulou J, Tam PPL, Hannan AJ (2008) Motor deficits in a Rett syndrome mouse model are ameliorated by environmental enrichment. Eur J Neurosci 27:3342-3350

    Article  PubMed  Google Scholar 

  49. Nag N, Moriuchi JM, Peitzman CG et al (2009) Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res 196:44-48

    Article  PubMed  Google Scholar 

  50. Fondon JW, Hammock EAD, Hannan AJ, King DJ (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31:328-334

    Article  CAS  PubMed  Google Scholar 

  51. Restivo L, Ferrari F, Passino E et al (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci USA 102:11557-11562

    Article  CAS  PubMed  Google Scholar 

  52. Martínez-Cué C, Baamonde C, Lumbreras M et al (2002) Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav Brain Res 134:185-200

    Article  PubMed  Google Scholar 

  53. Dierssen M, Benavides-Piccione R, Martínez-Cué C et al (2003) Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of Down syndrome: effects of EE. Cereb Cortex 13:758-764

    Article  CAS  PubMed  Google Scholar 

  54. Martínez-Cué C, Rueda N, García E et al (2005) Behavioral, cognitive and biochemical responses to different environmental conditions in male Ts65Dn mice, a model of Down syndrome. Behav Brain Res 163:174-185

    Article  PubMed  Google Scholar 

  55. Wood SJ, Pantelis C, Velakoulis D et al (2008) Progressive changes in the development toward schizophrenia: studies in subjects at increased symptomatic risk. Schizophr Bull 34:322-329

    Article  PubMed  Google Scholar 

  56. O’Tuathaigh CM, Babovic D, O’Meara G et al (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 31:60-78

    Article  PubMed  Google Scholar 

  57. Hannan AJ, Blakemore C, Katsnelson A et al (2001) PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4:282-288

    Article  CAS  PubMed  Google Scholar 

  58. Spires TL, Molnar Z et al (2005) Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling. Cereb Cortex 15:385-393

    Article  PubMed  Google Scholar 

  59. McOmish CE, Burrows E, Howard M, Hannan AJ (2008) PLC-β1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18:824-834

    Article  CAS  PubMed  Google Scholar 

  60. Gray L, McOmish CE, Scarr E et al (2009) Sensitivity to MK-801 in phospholipase C-β1 knockout mice reveals a specific NMDA receptor deficit. Int J Neuropsychopharmacol 12:917-928

    Google Scholar 

  61. McOmish CE, Burrows E, Howard M et al (2007) Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry 13:661-672

    Article  PubMed  Google Scholar 

  62. Caspi A, Sugden K, Moffitt TE, Taylor A et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386-389

    Article  CAS  PubMed  Google Scholar 

  63. Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) EE reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840-7843

    CAS  PubMed  Google Scholar 

  64. Kalueff AV, Wheaton M, Murphy DL (2007) What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 179:1-18

    Article  CAS  PubMed  Google Scholar 

  65. Hannan AJ (2004) Huntington’s disease: which drugs might help patients? IDrugs 7:351-358

    CAS  PubMed  Google Scholar 

  66. McOmish CE, Hannan AJ (2007) Enviromimetics: exploring gene-environment interactions to identify therapeutic targets for brain disorders. Expert Opin Ther Targets 11:899-913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank past and present members of the Hannan laboratory for useful discussions and experimental research upon which this article was partly based. The author’s work is funded by the NHMRC (Australia) and a Pfizer Australia Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hannan, A.J. (2010). Environmental Enrichment and Gene–Environment Interactions in Mouse Models of Brain Disorders. In: Kalueff, A., Bergner, C. (eds) Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, vol 44. Humana Press. https://doi.org/10.1007/978-1-60761-474-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-474-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-473-9

  • Online ISBN: 978-1-60761-474-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics