Skip to main content

Estrogen-Deficient Mouse Models in the Study of Brain Injury and Disease

  • Protocol
  • First Online:
Transgenic and Mutant Tools to Model Brain Disorders

Part of the book series: Neuromethods ((NM,volume 44))

  • 687 Accesses

Abstract

Estrogens are C-18 phenolic steroids derived from cholesterol and occur naturally in the forms of 17β-estradiol, estrone, and estriol. Estrogen biosynthesis begins with the transfer of cystolic cholesterol from the cytoplasm into the mitochondrion of steroidogenic cells (1-3). This transfer of cholesterol into the mitochondrion is facilitated by the steroidogenic acute regulatory protein (StAR) (1). This is the rate-limiting step in androgen biosynthesis, as the cholesterol has to be transferred to the site where the cytochrome P450 side-chain cleavage enzyme (P450scc, CYP11A1) is located. As its name indicates, it catalyzes the cleavage of the side-chain of cholesterol (4) to form pregnenolone. Conversion of pregnenolone to estrogens involves five catalyzing enzymes which, in a number of steps, convert pregnenolone to progesterone, progesterone to androgens, and finally, androgens to estrogens (1). The final and rate-limiting step in estrogen biosynthesis is the aromatization of testosterone and androstenedione to 17β-estradiol and estrone, respectively. Aromatization is catalyzed by the P450 aromatase monooxygenase enzyme complex (P450 aromatase, P450arom, CYP19; (5)). In premenopausal women, estrogens are predominantly formed by aromatization in the ovaries. In comparison to premenopausal women, serum 17β-estradiol concentrations in men and postmenopausal women are low. Most of the 17β-estradiol in the latter is formed by aromatization in extragonadal tissues (6), such as the adipose tissue (7), muscle (7), bone (8), adrenal (9), vasculature, and numerous sites in the brain (10, 11). Other estrogen-synthesizing tissues include testis (12), placenta (13), fetal (but not adult) liver (14). Adipose tissue synthesizes estrone from circulating androstenedione (15) secreted by the adrenal cortex (16). Of these two estrogens, 17β-estradiol is the more biologically active. In the placenta, estriol is synthesized from its precursor, 16α-hydroxydehydroisoandrosterone, and this substrate is derived from the fetal adrenal and liver (15). Estrogens may then exert their actions via estrogen receptor-dependent genomic and nongenomic actions, or possibly by estrogen receptor-independent mechanisms (see review (17)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B et al (2005) Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57:359-383

    Article  CAS  PubMed  Google Scholar 

  2. Kallen CB, Arakane F, Christenson LK, Watari H, Devoto L, Strauss JF 3rd (1998) Unveiling the mechanism of action and regulation of the steroidogenic acute regulatory protein. Mol Cell Endocrinol 145:39-45

    Article  CAS  PubMed  Google Scholar 

  3. Scallen TJ, Pastuszyn A, Noland BJ, Chanderbhan R, Kharroubi A, Vahouny GV (1985) Sterol carrier and lipid transfer proteins. Chem Phys Lipids 38:239-261

    Article  CAS  PubMed  Google Scholar 

  4. Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340-352

    Article  CAS  PubMed  Google Scholar 

  5. Thompson EA Jr, Siiteri PK (1974) The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem 249:5373-5378

    CAS  PubMed  Google Scholar 

  6. Baird DT, Fraser IS (1974) Blood production and ovarian secretion rates of estradiol-17 beta and estrone in women throughout the menstrual cycle. J Clin Endocrinol Metab 38:1009-1017

    Article  CAS  PubMed  Google Scholar 

  7. Simpson ER, Michael MD, Agarwal VR, Hinshelwood MM, Bulun SE, Zhao Y (1997) Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage. FASEB J 11:29-36

    CAS  PubMed  Google Scholar 

  8. Sasano H, Uzuki M, Sawai T, Nagura H, Matsunaga G, Kashimoto O et al (1997) Aromatase in human bone tissue. J Bone Miner Res 12:1416-1423

    Article  CAS  PubMed  Google Scholar 

  9. Moreau F, Mittre H, Benhaim A, Bertherat J, Carreau S, Reznik Y (2008) Aromatase expression in the normal human adult adrenal and in adrenocortical tumors: biochemical, immunohistochemical and molecular studies. Eur J Endocrinol 160:93

    Article  PubMed  CAS  Google Scholar 

  10. Naftolin F, Ryan KJ, Davies IJ, Petro Z, Kuhn M (1975) The formation and metabolism of estrogens in brain tissues. Adv Biosci 15:105-121

    CAS  PubMed  Google Scholar 

  11. Roselli CE, Horton LE, Resko JA (1985) Distribution and regulation of aromatase activity in the rat hypothalamus and ­limbic system. Endocrinology 117:2471-2477

    Article  CAS  PubMed  Google Scholar 

  12. Carreau S, Genissel C, Bilinska B, Levallet J (1999) Sources of oestrogen in the testis and reproductive tract of the male. Int J Androl 22:211-223

    Article  CAS  PubMed  Google Scholar 

  13. Evans CT, Ledesma DB, Schulz TZ, Simpson ER, Mendelson CR (1986) Isolation and characterization of a complementary DNA specific for human aromatase-system cytochrome P-450 mRNA. Proc Natl Acad Sci USA 83:6387-6391

    Article  CAS  PubMed  Google Scholar 

  14. Price T, Aitken J, Simpson ER (1992) Relative expression of aromatase cytochrome P450 in human fetal tissues as determined by competitive polymerase chain reaction amplification. J Clin Endocrinol Metab 74: 879-883

    Article  CAS  PubMed  Google Scholar 

  15. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S et al (1994) Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 15:342-355

    CAS  PubMed  Google Scholar 

  16. Judd HL, Parker DC, Rakoff JS, Hopper BR, Yen SS (1974) Elucidation of mechanism(s) of the nocturnal rise of testosterone in men. J Clin Endocrinol Metab 38:134-141

    Article  CAS  PubMed  Google Scholar 

  17. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833-842

    Article  PubMed  CAS  Google Scholar 

  18. Harada N, Yamada K (1992) Ontogeny of aromatase messenger ribonucleic acid in mouse brain: fluorometrical quantitation by polymerase chain reaction. Endocrinology 131:2306-2312

    Article  CAS  PubMed  Google Scholar 

  19. Hutchison JB, Beyer C, Hutchison RE, Wozniak A (1997) Sex differences in the regulation of embryonic brain aromatase. J Steroid Biochem Mol Biol 61:315-322

    Article  CAS  PubMed  Google Scholar 

  20. Ivanova T, Beyer C (2000) Ontogenetic expression and sex differences of aromatase and estrogen receptor-alpha/beta mRNA in the mouse hippocampus. Cell Tissue Res 300:231-237

    Article  CAS  PubMed  Google Scholar 

  21. Yamada K, Harada N, Tamaru M, Takagi Y (1993) Effects of changes in gonadal hormones on the amount of aromatase messenger RNA in mouse brain diencephalon. Biochem Biophys Res Commun 195:462-468

    Article  CAS  PubMed  Google Scholar 

  22. Kuppers E, Beyer C (1998) Expression of aromatase in the embryonic and postnatal mouse striatum. Brain Res Mol Brain Res 63:184-188

    Article  CAS  PubMed  Google Scholar 

  23. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K (2003) Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 144:4466-4477

    Article  CAS  PubMed  Google Scholar 

  24. Abe-Dohmae S, Takagi Y, Harada N (1997) Autonomous expression of aromatase during development of mouse brain is modulated by neurotransmitters. J Steroid Biochem Mol Biol 61:299-306

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB (1999) Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 89:567-578

    Article  CAS  PubMed  Google Scholar 

  26. Beyer C, Hutchison JB (1997) Androgens stimulate the morphological maturation of embryonic hypothalamic aromatase-immunoreactive neurons in the mouse. Brain Res Dev Brain Res 98:74-81

    Article  CAS  PubMed  Google Scholar 

  27. Iivonen S, Heikkinen T, Puolivali J, Helisalmi S, Hiltunen M, Soininen H et al (2006) Effects of estradiol on spatial learning, hippocampal cytochrome P450 19, and estrogen alpha and beta mRNA levels in ovariectomized female mice. Neuroscience 137:1143-1152

    Article  CAS  PubMed  Google Scholar 

  28. Anderson DC (1974) Sex-hormone-binding globulin. Clin Endocrinol (Oxf) 3:69-96

    Article  CAS  Google Scholar 

  29. Hochberg RB (1998) Biological esterification of steroids. Endocr Rev 19:331-348

    Article  CAS  PubMed  Google Scholar 

  30. Tang M, Abplanalp W, Subbiah MT (1997) Association of estrogens with human plasma lipoproteins: studies using estradiol-17beta and its hydrophobic derivative. J Lab Clin Med 129:447-452

    Article  CAS  PubMed  Google Scholar 

  31. Zhang D, Trudeau VL (2006) Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol 144:306-315

    Article  PubMed  CAS  Google Scholar 

  32. Walker P, Germond JE, Brown-Luedi M, Givel F, Wahli W (1984) Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res 12:8611-8626

    Article  CAS  PubMed  Google Scholar 

  33. Driscoll MD, Sathya G, Muyan M, Klinge CM, Hilf R, Bambara RA (1998) Sequence requirements for estrogen receptor binding to estrogen response elements. J Biol Chem 273:29321-29330

    Article  CAS  PubMed  Google Scholar 

  34. El-Ashry D, Chrysogelos SA, Lippman ME, Kern FG (1996) Estrogen induction of TGF-alpha is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem Mol Biol 59:261-269

    Article  CAS  PubMed  Google Scholar 

  35. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354-1357

    Article  CAS  PubMed  Google Scholar 

  36. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H et al (1996) Role of CBP/P300 in nuclear receptor signalling. Nature 383:99-103

    Article  CAS  PubMed  Google Scholar 

  37. Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS (1999) An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA 96:6947-6952

    Article  CAS  PubMed  Google Scholar 

  38. Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443-456

    Article  CAS  PubMed  Google Scholar 

  39. Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone-Corsi P (1990) Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell 63:1267-1276

    Article  CAS  PubMed  Google Scholar 

  40. Umayahara Y, Kawamori R, Watada H, Imano E, Iwama N, Morishima T et al (1994) Estrogen regulation of the insulin-like growth factor I gene transcription involves an AP-1 enhancer. J Biol Chem 269:16433-16442

    CAS  PubMed  Google Scholar 

  41. Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM et al (2002) Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277:24353-24360

    Article  CAS  PubMed  Google Scholar 

  42. Sabbah M, Courilleau D, Mester J, Redeuilh G (1999) Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci USA 96:11217-11222

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt M, Fasselt B, Rumenapp U, Bienek C, Wieland T, van Koppen CJ et al (1995) Rapid and persistent desensitization of m3 muscarinic acetylcholine receptor-stimulated phospholipase D. Concomitant sensitization of phospholipase C. J Biol Chem 270: 19949-19956

    Article  CAS  PubMed  Google Scholar 

  44. Ray P, Ghosh SK, Zhang DH, Ray A (1997) Repression of interleukin-6 gene expression by 17 beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS Lett 409:79-85

    Article  CAS  PubMed  Google Scholar 

  45. Porter W, Saville B, Hoivik D, Safe S (1997) Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol 11:1569-1580

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Hu K, Li CY (2001) Protection against oxidized low-density lipoprotein-induced vascular endothelial cell death by integrin-linked kinase. Circulation 104:2762-2766

    Article  CAS  PubMed  Google Scholar 

  47. Duan R, Porter W, Safe S (1998) Estrogen-induced c-fos protooncogene expression in MCF-7 human breast cancer cells: role of estrogen receptor Sp1 complex formation. Endocrinology 139:1981-1990

    Article  CAS  PubMed  Google Scholar 

  48. Castro-Rivera E, Samudio I, Safe S (2001) Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 276:30853-30861

    Article  CAS  PubMed  Google Scholar 

  49. Stein B, Yang MX (1995) Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 15:4971-4979

    CAS  PubMed  Google Scholar 

  50. Ronnekleiv OK, Malyala A, Kelly MJ (2007) Membrane-initiated signaling of estrogen in the brain. Semin Reprod Med 25:165-177

    Article  CAS  PubMed  Google Scholar 

  51. Chaban VV, Lakhter AJ, Micevych P (2004) A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145:3788-3795

    Article  CAS  PubMed  Google Scholar 

  52. Pietras RJ, Szego CM (1977) Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265:69-72

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez-Perez O, Ballesteros LM, Rosado A (1979) Binding of 17-beta-estradiol to the outer surface and nucleus of human spermatozoa. Arch Androl 3:23-29

    Article  CAS  PubMed  Google Scholar 

  54. Pietras RJ, Szego CM (1980) Partial purification and characterization of oestrogen receptors in subfractions of hepatocyte plasma membranes. Biochem J 191: 743-760

    CAS  PubMed  Google Scholar 

  55. Zanker KS, Prokscha GW, Blumel G (1981) Plasma membrane-integrated estrogen receptors in breast tissue: possible modulator molecular for intracellular hormone level. J Cancer Res Clin Oncol 100:135-148

    Article  CAS  PubMed  Google Scholar 

  56. Jacob J, Sebastian KS, Devassy S, Priyadarsini L, Farook MF, Shameem A et al (2006) Membrane estrogen receptors: genomic actions and post transcriptional regulation. Mol Cell Endocrinol 246:34-41

    Article  CAS  PubMed  Google Scholar 

  57. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146: 624-632

    Article  CAS  PubMed  Google Scholar 

  58. Toran-Allerand CD (2004) Estrogen and the brain: beyond ER-alpha and ER-beta. Exp Gerontol 39:1579-1586

    Article  CAS  PubMed  Google Scholar 

  59. Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M et al (2002) ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J Neurosci 22:8391-8401

    CAS  PubMed  Google Scholar 

  60. Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319(Pt 3):657-667

    CAS  PubMed  Google Scholar 

  61. Shao D, Lazar MA (1999) Modulating nuclear receptor function: may the phos be with you. J Clin Invest 103:1617-1618

    Article  CAS  PubMed  Google Scholar 

  62. Smith CL, Conneely OM, O’Malley BW (1993) Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci USA 90:6120-6124

    Article  CAS  PubMed  Google Scholar 

  63. Trowbridge IS, Collawn JF, Hopkins CR (1993) Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol 9:129-161

    Article  CAS  PubMed  Google Scholar 

  64. Newton CJ, Buric R, Trapp T, Brockmeier S, Pagotto U, Stalla GK (1994) The unliganded estrogen receptor (ER) transduces growth factor signals. J Steroid Biochem Mol Biol 48:481-486

    Article  CAS  PubMed  Google Scholar 

  65. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L et al (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435-2446

    CAS  PubMed  Google Scholar 

  66. Aronica SM, Katzenellenbogen BS (1991) Progesterone receptor regulation in uterine cells: stimulation by estrogen, cyclic adenosine 3’, 5’-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. Endocrinology 128:2045-2052

    Article  CAS  PubMed  Google Scholar 

  67. Mitra SW, Hoskin E, Yudkovitz J, Pear L, Wilkinson HA, Hayashi S et al (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144:2055-2067

    Article  CAS  PubMed  Google Scholar 

  68. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613-4621

    Article  CAS  PubMed  Google Scholar 

  69. Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 95:6965-6970

    Article  CAS  PubMed  Google Scholar 

  70. Simpson ER, Zhao Y, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM et al (1997) Aromatase expression in health and disease. Recent Prog Horm Res 52:185-213 discussion 213-184

    CAS  PubMed  Google Scholar 

  71. Graham-Lorence S, Amarneh B, White RE, Peterson JA, Simpson ER (1995) A three-dimensional model of aromatase cytochrome P450. Protein Sci 4:1065-1080

    Article  CAS  PubMed  Google Scholar 

  72. Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, Jones ME et al (2000) An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology 141:2614-2623

    Article  CAS  PubMed  Google Scholar 

  73. Robertson KM, O’Donnell L, Jones ME, Meachem SJ, Boon WC, Fisher CR et al (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci USA 96:7986-7991

    Article  CAS  PubMed  Google Scholar 

  74. Robertson KM, Simpson ER, Lacham-Kaplan O, Jones ME (2001) Characterization of the fertility of male aromatase knockout mice. J Androl 22:825-830

    CAS  PubMed  Google Scholar 

  75. Toda K, Saibara T, Okada T, Onishi S, Shizuta Y (2001) A loss of aggressive behaviour and its reinstatement by oestrogen in mice lacking the aromatase gene (Cyp19). J Endocrinol 168:217-220

    Article  CAS  PubMed  Google Scholar 

  76. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J et al (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 97:12735-12740

    Article  CAS  PubMed  Google Scholar 

  77. Hewitt KN, Pratis K, Jones ME, Simpson ER (2004) Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology 145:1842-1848

    Article  CAS  PubMed  Google Scholar 

  78. Oz OK, Zerwekh JE, Fisher C, Graves K, Nanu L, Millsaps R et al (2000) Bone has a sexually dimorphic response to aromatase deficiency. J Bone Miner Res 15:507-514

    Article  CAS  PubMed  Google Scholar 

  79. Miyaura C, Toda K, Inada M, Ohshiba T, Matsumoto C, Okada T et al (2001) Sex- and age-related response to aromatase deficiency in bone. Biochem Biophys Res Commun 280:1062-1068

    Article  CAS  PubMed  Google Scholar 

  80. Honda S, Harada N, Ito S, Takagi Y, Maeda S (1998) Disruption of sexual behavior in male aromatase-deficient mice lacking exons 1 and 2 of the cyp19 gene. Biochem Biophys Res Commun 252:445-449

    Article  CAS  PubMed  Google Scholar 

  81. Jones ME, Simpson ER (2000) Oestrogens in male reproduction. Baillieres Best Pract Res Clin Endocrinol Metab 14:505-516

    Article  CAS  PubMed  Google Scholar 

  82. Toda K, Takeda K, Okada T, Akira S, Saibara T, Kaname T, Yamamura K, Onishi S, Shizuta Y, (2001) Targeted disruption of the aromatase P450 gene (Cyp 19) in mice and their ovarian and uterine responses to 17beta-oestradiol, J. Endocrinol, 170(1): 99-111

    Google Scholar 

  83. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162-11166

    Article  CAS  PubMed  Google Scholar 

  84. Eddy EM, Washburn TF, Bunch DO, Goulding EH, Gladen BC, Lubahn DB et al (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137:4796-4805

    Article  CAS  PubMed  Google Scholar 

  85. Hess RA (2000) Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 5:84-92

    Article  CAS  PubMed  Google Scholar 

  86. Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS et al (1997) A role for oestrogens in the male reproductive system. Nature 390:509-512

    Article  CAS  PubMed  Google Scholar 

  87. Burns-Cusato M, Scordalakes EM, Rissman EF (2004) Of mice and missing data: what we know (and need to learn) about male sexual behavior. Physiol Behav 83:217-232

    CAS  PubMed  Google Scholar 

  88. Enmark E, Gustafsson JA (1999) Oestrogen receptors - an overview. J Intern Med 246:133-138

    Article  CAS  PubMed  Google Scholar 

  89. Couse JF, Korach KS (1999) Reproductive phenotypes in the estrogen receptor-alpha knockout mouse. Ann Endocrinol (Paris) 60:143-148

    CAS  Google Scholar 

  90. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF et al (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA 95:15677-15682

    Article  CAS  PubMed  Google Scholar 

  91. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127:4277-4291

    CAS  PubMed  Google Scholar 

  92. Britt KL, Findlay JK (2003) Regulation of the phenotype of ovarian somatic cells by estrogen. Mol Cell Endocrinol 202:11-17

    CAS  PubMed  Google Scholar 

  93. Wise PM, Dubal DB, Wilson ME, Rau SW, Bottner M, Rosewell KL (2001) Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies. Brain Res Brain Res Rev 37:313-319

    Article  CAS  PubMed  Google Scholar 

  94. Amantea D, Russo R, Bagetta G, Corasaniti MT (2005) From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 52:119-132

    Article  CAS  PubMed  Google Scholar 

  95. Wise PM, Dubal DB, Wilson ME, Rau SW, Bottner M (2001) Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 142:969-973

    Article  CAS  PubMed  Google Scholar 

  96. Merchenthaler I, Dellovade TL, Shughrue PJ (2003) Neuroprotection by estrogen in animal models of global and focal ischemia. Ann N Y Acad Sci 1007:89-100

    Article  CAS  PubMed  Google Scholar 

  97. McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD (2003) Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci 23:8701-8705

    CAS  PubMed  Google Scholar 

  98. Suzuki S, Gerhold LM, Bottner M, Rau SW, Dela Cruz C, Yang E et al (2007) Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol 500:1064-1075

    Article  CAS  PubMed  Google Scholar 

  99. Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB et al (2006) Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology 147:3076-3084

    Article  CAS  PubMed  Google Scholar 

  100. Alkayed NJ, Goto S, Sugo N, Joh HD, Klaus J, Crain BJ et al (2001) Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke. J Neurosci 21:7543-7550

    CAS  PubMed  Google Scholar 

  101. Park EM, Cho S, Frys KA, Glickstein SB, Zhou P, Anrather J et al (2006) Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J Cereb Blood Flow Metab 26:392-401

    Article  CAS  PubMed  Google Scholar 

  102. Ardelt AA, McCullough LD, Korach KS, Wang MM, Munzenmaier DH, Hurn PD (2005) Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-alpha in a rodent experimental stroke model. Stroke 36:337-341

    Article  CAS  PubMed  Google Scholar 

  103. Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I et al (2001) Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA 98:1952-1957

    Article  CAS  PubMed  Google Scholar 

  104. Singh M, Setalo G Jr, Guan X, Frail DE, Toran-Allerand CD (2000) Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. J Neurosci 20:1694-1700

    CAS  PubMed  Google Scholar 

  105. Toran-Allerand CD (2000) Novel sites and mechanisms of oestrogen action in the brain. Novartis Found Symp 230:56-69 discussion 69-73

    Article  CAS  PubMed  Google Scholar 

  106. Hill RA, Chua HK, Jones ME, Simpson ER, Boon WC (2009) Estrogen deficiency results in apoptosis in the frontal cortex of adult female Aromatase Knockout mice. Mol Cell Neurosci 41(1):1-7

    Article  CAS  PubMed  Google Scholar 

  107. Hill RA, Pompolo S, Jones ME, Simpson ER, Boon WC (2004) Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice. Mol Cell Neurosci 27:466-476

    Article  CAS  PubMed  Google Scholar 

  108. Hill RA, Chow J, Fritzemeier K, Simpson ER, Boon WC (2007) Fas/FasL-mediated apoptosis in the arcuate nucleus and medial preoptic area of male ArKO mice is ameliorated by selective estrogen receptor alpha and estrogen receptor beta agonist treatment, respectively. Mol Cell Neurosci 36:146-157

    Article  CAS  PubMed  Google Scholar 

  109. Hill RA, McInnes KJ, Gong EC, Jones ME, Simpson ER, Boon WC (2007) Estrogen deficient male mice develop compulsive behavior. Biol Psychiatry 61:359-366

    Article  CAS  PubMed  Google Scholar 

  110. Cyr M, Calon F, Morissette M, Di Paolo T (2002) Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson’s disease. J Psychiatry Neurosci 27:12-27

    PubMed  Google Scholar 

  111. Tsang KL, Ho SL, Lo SK (2000) Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology 54:2292-2298

    CAS  PubMed  Google Scholar 

  112. Blanchet PJ, Fang J, Hyland K, Arnold LA, Mouradian MM, Chase TN (1999) Short-term effects of high-dose 17beta-estradiol in postmenopausal PD patients: a crossover study. Neurology 53:91-95

    CAS  PubMed  Google Scholar 

  113. Strijks E, Kremer JA, Horstink MW (1999) Effects of female sex steroids on Parkinson’s disease in postmenopausal women. Clin Neuropharmacol 22:93-97

    Article  CAS  PubMed  Google Scholar 

  114. Henderson VW (2006) Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 138:1031-1039

    Article  CAS  PubMed  Google Scholar 

  115. Doraiswamy PM, Bieber F, Kaiser L, Krishnan KR, Reuning-Scherer J, Gulanski B (1997) The Alzheimer’s disease assessment scale: patterns and predictors of baseline cognitive performance in multicenter Alzheimer’s disease trials. Neurology 48:1511-1517

    CAS  PubMed  Google Scholar 

  116. Henderson VW, Watt L, Buckwalter JG (1996) Cognitive skills associated with estrogen replacement in women with Alzheimer’s disease. Psychoneuroendocrinology 21:421-430

    Article  CAS  PubMed  Google Scholar 

  117. Bonnefont AB, Munoz FJ, Inestrosa NC (1998) Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes. FEBS Lett 441:220-224

    Article  CAS  PubMed  Google Scholar 

  118. Goodman Y, Bruce AJ, Cheng B, Mattson MP (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 66:1836-1844

    Article  CAS  PubMed  Google Scholar 

  119. Hosoda T, Nakajima H, Honjo H (2001) Estrogen protects neuronal cells from amyloid beta-induced apoptotic cell death. Neuroreport 12:1965-1970

    Article  CAS  PubMed  Google Scholar 

  120. Marin R, Guerra B, Hernandez-Jimenez JG, Kang XL, Fraser JD, Lopez FJ et al (2003) Estradiol prevents amyloid-beta peptide-induced cell death in a cholinergic cell line via modulation of a classical estrogen receptor. Neuroscience 121:917-926

    Article  CAS  PubMed  Google Scholar 

  121. Moosmann B, Behl C (1999) The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci USA 96:8867-8872

    Article  CAS  PubMed  Google Scholar 

  122. Zhang Y, Champagne N, Beitel LK, Goodyer CG, Trifiro M, LeBlanc A (2004) Estrogen and androgen protection of human neurons against intracellular amyloid beta1-42 toxicity through heat shock protein 70. J Neurosci 24:5315-5321

    Article  CAS  PubMed  Google Scholar 

  123. Gelinas S, Martinoli MG (2002) Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 70:90-96

    Article  CAS  PubMed  Google Scholar 

  124. Morale MC, L’Episcopo F, Tirolo C, Giaquinta G, Caniglia S, Testa N et al (2008) Loss of aromatase cytochrome P450 function as a risk factor for Parkinson’s disease? Brain Res Rev 57:431-443

    Article  CAS  PubMed  Google Scholar 

  125. Levin-Allerhand JA, Lominska CE, Wang J, Smith JD (2002) 17Alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis 4:449-457

    CAS  PubMed  Google Scholar 

  126. Tang YP, Haslam SZ, Conrad SE, Sisk CL (2004) Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein. J Alzheimers Dis 6:413-420 discussion 443-419

    CAS  PubMed  Google Scholar 

  127. Green PS, Bales K, Paul S, Bu G (2005) Estrogen therapy fails to alter amyloid deposition in the PDAPP model of Alzheimer’s disease. Endocrinology 146:2774-2781

    Article  CAS  PubMed  Google Scholar 

  128. van Groen T, Kadish I (2005) Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Res Brain Res Rev 48:370-378

    PubMed  Google Scholar 

  129. Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M et al (2005) Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer’s disease animal model. Proc Natl Acad Sci USA 102:19198-19203

    Article  CAS  PubMed  Google Scholar 

  130. Wang JM, Irwin RW, Brinton RD (2006) Activation of estrogen receptor alpha increases and estrogen receptor beta decreases apolipoprotein E expression in hippocampus in vitro and in vivo. Proc Natl Acad Sci USA 103:16983-16988

    Article  CAS  PubMed  Google Scholar 

  131. Luine VN (2008) Sex steroids and cognitive function. J Neuroendocrinol 20:866-872

    Article  CAS  PubMed  Google Scholar 

  132. Martin S, Jones M, Simpson E, van den Buuse M (2003) Impaired spatial reference memory in aromatase-deficient (ArKO) mice. Neuroreport 14:1979-1982

    Article  CAS  PubMed  Google Scholar 

  133. Boon WC, Diepstraten J, van der Burg J, Jones ME, Simpson ER, van den Buuse M (2005) Hippocampal NMDA receptor subunit expression and watermaze learning in estrogen deficient female mice. Brain Res Mol Brain Res 140:127-132

    Article  CAS  PubMed  Google Scholar 

  134. Fugger HN, Cunningham SG, Rissman EF, Foster TC (1998) Sex differences in the activational effect of ERalpha on spatial learning. Horm Behav 34:163-170

    Article  CAS  PubMed  Google Scholar 

  135. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181-188

    CAS  PubMed  Google Scholar 

  136. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234-258

    Article  CAS  PubMed  Google Scholar 

  137. Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M (1996) Sensorimotor gating in boys with Tourette’s syndrome and ADHD: preliminary results. Biol Psychiatry 39:33-41

    Article  CAS  PubMed  Google Scholar 

  138. Hoenig K, Hochrein A, Quednow BB, Maier W, Wagner M (2005) Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol Psychiatry 57:1153-1158

    Article  PubMed  Google Scholar 

  139. Swerdlow NR, Auerbach P, Monroe SM, Hartston H, Geyer MA, Braff DL (1993) Men are more inhibited than women by weak prepulses. Biol Psychiatry 34:253-260

    Article  CAS  PubMed  Google Scholar 

  140. van den Buuse M, Simpson ER, Jones ME (2003) Prepulse inhibition of acoustic startle in aromatase knock-out mice: effects of age and gender. Genes Brain Behav 2:93-102

    Article  PubMed  Google Scholar 

  141. Gogos A, Martin S, Jones ME, van den Buuse M (2006) Oestrogen modulation of the effect of 8-OH-DPAT on prepulse inhibition: effects of aromatase deficiency and castration in mice. Psychopharmacology 188:100-110

    Article  CAS  PubMed  Google Scholar 

  142. Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2004) Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 20:217-228

    Article  CAS  PubMed  Google Scholar 

  143. Dalla C, Antoniou K, Papadopoulou-Daifoti Z, Balthazart J, Bakker J (2005) Male aromatase-knockout mice exhibit normal levels of activity, anxiety and “depressive-like” symptomatology. Behav Brain Res 163:186-193

    Article  CAS  PubMed  Google Scholar 

  144. Gorman JM (2006) Gender differences in depression and response to psychotropic medication. Gend Med 3:93-109

    Article  PubMed  Google Scholar 

  145. Walf AA, Frye CA (2006) A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 31:1097-1111

    CAS  PubMed  Google Scholar 

  146. Rocha BA, Fleischer R, Schaeffer JM, Rohrer SP, Hickey GJ (2005) 17 Beta-estradiol-induced antidepressant-like effect in the forced swim test is absent in estrogen receptor-beta knockout (BERKO) mice. Psychopharmacology 179:637-643

    Article  CAS  PubMed  Google Scholar 

  147. Kruk MR, Westphal KG, Van Erp AM, van Asperen J, Cave BJ, Slater E et al (1998) The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev 23:163-177

    Article  CAS  PubMed  Google Scholar 

  148. Lumley LA, Robison CL, Chen WK, Mark B, Meyerhoff JL (2001) Vasopressin into the preoptic area increases grooming behavior in mice. Physiol Behav 73:451-455

    Article  CAS  PubMed  Google Scholar 

  149. Fahrbach SE, Meisel RL, Pfaff DW (1985) Preoptic implants of estradiol increase wheel running but not the open field activity of female rats. Physiol Behav 35:985-992

    Article  CAS  PubMed  Google Scholar 

  150. King JM (1979) Effects of lesions of the amygdala, preoptic area, and hypothalamus on estradiol-induced activity in the female rat. J Comp Physiol Psychol 93:360-367

    Article  CAS  PubMed  Google Scholar 

  151. Greist JH, Bandelow B, Hollander E, Marazziti D, Montgomery SA, Nutt DJ et al (2003) WCA recommendations for the long-term treatment of obsessive-compulsive disorder in adults. CNS Spectr 8:7-16

    PubMed  Google Scholar 

  152. Pallanti S, Hollander E, Bienstock C, Koran L, Leckman J, Marazziti D et al (2002) Treatment non-response in OCD: methodological issues and operational definitions. Int J Neuropsychopharmacol 5:181-191

    Article  PubMed  Google Scholar 

  153. McDougle CJ, Epperson CN, Pelton GH, Wasylink S, Price LH (2000) A double-blind, placebo-controlled study of risperidone addition in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 57:794-801

    Article  CAS  PubMed  Google Scholar 

  154. Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ et al (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of Obsessive-Compulsive Disorder(OCD): form and control. BMC Neurosci 2:4

    Article  CAS  PubMed  Google Scholar 

  155. Ulloa RE, Nicolini H, Fernandez-Guasti A (2004) Age differences in an animal model of obsessive-compulsive disorder: participation of dopamine: dopamine in an animal model of OCD. Pharmacol Biochem Behav 78:661-666

    Article  CAS  PubMed  Google Scholar 

  156. Lochner C, Hemmings SM, Kinnear CJ, Moolman-Smook JC, Corfield VA, Knowles JA et al (2004) Gender in obsessive-compulsive disorder: clinical and genetic findings. Eur Neuropsychopharmacol 14:105-113

    Article  CAS  PubMed  Google Scholar 

  157. Lochner C, Hemmings SM, Kinnear CJ, Niehaus DJ, Nel DG, Corfield VA et al (2005) Cluster analysis of obsessive-compulsive spectrum disorders in patients with obsessive-compulsive disorder: clinical and genetic correlates. Compr Psychiatry 46:14-19

    Article  PubMed  Google Scholar 

  158. Bogetto F, Venturello S, Albert U, Maina G, Ravizza L (1999) Gender-related clinical differences in obsessive-compulsive disorder. Eur Psychiatry 14:434-441

    Article  CAS  PubMed  Google Scholar 

  159. Castle DJ, Deale A, Marks IM (1995) Gender differences in obsessive compulsive disorder. Aust N Z J Psychiatry 29:114-117

    Article  CAS  PubMed  Google Scholar 

  160. Matsumoto T, Honda S, Harada N (2003) Alteration in sex-specific behaviors in male mice lacking the aromatase gene. Neuroendocrinology 77:416-424

    Article  CAS  PubMed  Google Scholar 

  161. Bakker J, Honda S, Harada N, Balthazart J (2004) Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice. Horm Behav 46:1-10

    Article  CAS  PubMed  Google Scholar 

  162. Taziaux M, Keller M, Bakker J, Balthazart J (2007) Sexual behavior activity tracks rapid changes in brain estrogen concentrations. J Neurosci 27:6563-6572

    Article  CAS  PubMed  Google Scholar 

  163. Bakker J, Honda S, Harada N, Balthazart J (2002) The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 22:9104-9112

    CAS  PubMed  Google Scholar 

  164. Pierman S, Douhard Q, Bakker J (2008) Evidence for a role of early oestrogens in the central processing of sexually relevant olfactory cues in female mice. Eur J Neurosci 27:423-431

    Article  PubMed  Google Scholar 

  165. Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci USA 94:1476-1481

    Article  CAS  PubMed  Google Scholar 

  166. Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW (1999) Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci USA 96:12887-12892

    Article  CAS  PubMed  Google Scholar 

  167. Ogawa S, Chester AE, Hewitt SC, Walker VR, Gustafsson JA, Smithies O et al (2000) Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (alpha beta ERKO). Proc Natl Acad Sci USA 97:14737-14741

    Article  CAS  PubMed  Google Scholar 

  168. Ogawa S, Gordan JD, Taylor J, Lubahn D, Korach K, Pfaff DW (1996) Reproductive functions illustrating direct and indirect effects of genes on behavior. Horm Behav 30:487-494

    Article  CAS  PubMed  Google Scholar 

  169. Rissman EF, Early AH, Taylor JA, Korach KS, Lubahn DB (1997) Estrogen receptors are essential for female sexual receptivity. Endocrinology 138:507-510

    Article  CAS  PubMed  Google Scholar 

  170. Rissman EF, Wersinger SR, Fugger HN, Foster TC (1999) Sex with knockout models: behavioral studies of estrogen receptor alpha. Brain Res 835:80-90

    Article  CAS  PubMed  Google Scholar 

  171. Bodo C, Rissman EF (2006) New roles for estrogen receptor beta in behavior and neuroendocrinology. Front Neuroendocrinol 27:217-232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hill, R.A., Boon, W.C. (2010). Estrogen-Deficient Mouse Models in the Study of Brain Injury and Disease. In: Kalueff, A., Bergner, C. (eds) Transgenic and Mutant Tools to Model Brain Disorders. Neuromethods, vol 44. Humana Press. https://doi.org/10.1007/978-1-60761-474-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-474-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-473-9

  • Online ISBN: 978-1-60761-474-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics