Skip to main content

Analysing DNA Methylation Using Bisulphite Pyrosequencing

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

Bisulphite pyrosequencing is a quantitative methodology for the investigation of DNA methylation of sequences up to 100-bp in length. Biotin-labelled, single-stranded PCR products generated from bisulphite-treated DNA are used as a template with an internal primer to perform the pyrosequencing reaction. Nucleotides are added in a predetermined order in each pyrosequencing cycle and the amount of incorporated nucleotide results in a proportional emission of light. DNA methylation ratios are calculated from the levels of light emitted from each nucleotide incorporated at individual CpG positions in a strand-dependent manner. The methylation detection limit at individual CpG sites is approximately 5% and the results are displayed as an average methylation level for each CpG position assayed across all amplification products generated during a PCR reaction. As a consequence, bisulphite pyrosequencing allows the identification of heterogeneous DNA methylation patterns but does not provide information at a single allele resolution. This methodology is suited to analyse short DNA sequences such as those typically extracted from formalin-fixed paraffin-embedded specimens. Nevertheless, longer PCR products can be sequenced by serial bisulphite pyrosequencing, which utilises tandem assays along the amplicon. The general information provided is applicable for all formats of current pyrosequencing instruments, however, a specific protocol for the PyroMark Q24 instrument is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronaghi, M., Uhlen, M., and Nyren, P. (1998) A sequencing method based on real-time pyrophosphate Science 281: 363–5.

    Article  PubMed  CAS  Google Scholar 

  2. Fakhrai-Rad, H., Pourmand, N., and Ronaghi, M. (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms Hum. Mutat. 19: 479–85.

    Article  PubMed  CAS  Google Scholar 

  3. Ronaghi, M., Shokralla, S., and Gharizadeh, B. (2007) Pyrosequencing for discovery and ­analysis of DNA sequence variations Pharma­cogenomics 8: 1437–41.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, J. H., and Jeon, J. T. (2008) Methods to detect and analyze copy number variations at the genome-wide and locus-specific levels Cytogenet. Genome Res. 123: 333–42.

    Article  PubMed  CAS  Google Scholar 

  5. Uhlmann, K., Brinckmann, A., Toliat, M. R., Ritter, H., and Nurnberg, P. (2002) Evaluation of a potential epigenetic biomarker by quantitative methyl-single nucleotide polymorphism analysis Electrophoresis 23: 4072–9.

    Article  PubMed  CAS  Google Scholar 

  6. Colella, S., Shen, L., Baggerly, K. A., Issa, J. P., and Krahe, R. (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites Biotechniques 35: 146–50.

    PubMed  CAS  Google Scholar 

  7. Tost, J., Dunker, J., and Gut, I. G. (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing Biotechniques 35: 152–6.

    PubMed  CAS  Google Scholar 

  8. Shaw, R. J., Liloglou, T., Rogers, S. N., et al. (2006) Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing Br. J. Cancer 94: 561–8.

    Article  PubMed  CAS  Google Scholar 

  9. White, H. E., Durston, V. J., Harvey, J. F., and Cross, N. C. P. (2006) Quantitative analysis of SNRPN(correction of SRNPN) gene methylation by pyrosequencing as a diagnostic test for Prader-Willi syndrome and Angelman syndrome Clin. Chem. 52: 1005–13.

    Article  PubMed  CAS  Google Scholar 

  10. Song, M. A., Park, J. H., Jeong, K. S., Park, D. S., Kang, M. S., and Lee, S. (2007) Quantification of CpG methylation at the 5′-region of XIST by pyrosequencing from human serum Electrophoresis 28: 2379–84.

    Article  PubMed  CAS  Google Scholar 

  11. Mikeska, T., Bock, C., El-Maarri, O., et al. (2007) Optimization of Quantitative MGMT Promoter Methylation Analysis Using Pyrosequencing and Combined Bisulfite Restriction Analysis J. Mol. Diagn. 9: 368–81.

    Article  PubMed  CAS  Google Scholar 

  12. Lof-Ohlin, Z. M., and Nilsson, T. K. (2009) Pyrosequencing assays to study promoter CpG site methylation of the O6-MGMT, hMLH1, p14ARF, p16INK4a, RASSF1A, and APC1A genes Oncol. Rep. 21: 721–9.

    PubMed  Google Scholar 

  13. Wong, H.-L., Byun, H.-M., Kwan, J. M., et al. (2006) Rapid and quantitative method of allele-specific DNA methylation analysis Biotechniques 41: 734–9.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, A. S., Estecio, M. R. H., Doshi, K., Kondo, Y., Tajara, E. H., and Issa, J. P. (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements Nucl. Acids Res. 32: e38.

    Article  PubMed  Google Scholar 

  15. Richards, K. L., Zhang, B., Baggerly, K. A., et al. (2009) Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability PLoS One 4: e4941.

    Article  PubMed  Google Scholar 

  16. Xie, H., Wang, M., Bonaldo, M. de F., et al. (2009) High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum Nucleic Acids Res. 37: 4331–40.

    Google Scholar 

  17. Yamamoto, E., Toyota, M., Suzuki, H., et al. (2008) LINE-1 hypomethylation is associated with increased CpG island methylation in Helicobacter pylori-related enlarged-fold gastritis Cancer Epidemiol. Biomarkers Prev. 17: 2555–64.

    Article  PubMed  CAS  Google Scholar 

  18. Aparicio, A., North, B., Barske, L., et al. (2009) LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors Epigenetics 4: 176–84.

    Article  PubMed  CAS  Google Scholar 

  19. Irahara, N., Nosho, K., Baba, Y., et al. (2010) Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells J. Mol. Diagn. 12: 177–83.

    Article  PubMed  CAS  Google Scholar 

  20. Choi, S. H., Worswick, S., Byun, H.-M., et al. (2009) Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer Int. J. Cancer 125: 723–9.

    Article  PubMed  CAS  Google Scholar 

  21. Mikeska, T., Candiloro, I. L., and Dobrovic, A. (2010) The implications of heterogeneous DNA methylation for the accurate quantification of methylation Epigenomics 2: 561–73.

    Article  PubMed  CAS  Google Scholar 

  22. Ronaghi, M. (2001) Pyrosequencing sheds light on DNA sequencing Genome Res. 11: 3–11.

    Article  PubMed  CAS  Google Scholar 

  23. Ahmadian, A., Ehn, M., and Hober, S. (2006) Pyrosequencing: history, biochemistry and future Clin. Chim. Acta 363: 83–94.

    Article  PubMed  CAS  Google Scholar 

  24. Gharizadeh, B., Nordstrom, T., Ahmadian, A., Ronaghi, M., and Nyren, P. (2002) Long-read pyrosequencing using pure 2′-deoxyadenosine-5′-O′-(1-thiotriphosphate) Sp-isomer Anal. Biochem. 301: 82–90.

    Article  PubMed  CAS  Google Scholar 

  25. Brakensiek, K., Wingen, L. U., Länger, F., Kreipe, H., and Lehmann, U. (2007) Quantitative high-resolution CpG island mapping with Pyrosequencing reveals disease-specific methylation patterns of the CDKN2B gene in myelodysplastic syndrome and myeloid leukemia Clin. Chem. 53: 17–23.

    Article  PubMed  CAS  Google Scholar 

  26. Tost, J., El abdalaoui, H., and Gut, I. G. (2006) Serial pyrosequencing for quantitative DNA methylation analysis Biotechniques 40: 721–2, 724, 726.

    Google Scholar 

  27. Pasquali, L., Bedeir, A., Ringquist, S., Styche, A., Bhargava, R., and Trucco, G. (2007) Quantification of CpG island methylation in progressive breast lesions from normal to invasive carcinoma Cancer Lett. 257: 136–44.

    Article  PubMed  CAS  Google Scholar 

  28. Dunn, J., Baborie, A., Alam, F., et al. (2009) Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy Br. J. Cancer 101: 124–31.

    Article  PubMed  CAS  Google Scholar 

  29. Flanagan, J. M., Cocciardi, S., Waddell, N., et al. (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status Am. J. Hum. Genet. 86: 420–33.

    Article  PubMed  CAS  Google Scholar 

  30. Lewin, J., Schmitt, A. O., Adorján, P., Hildmann, T., and Piepenbrock, C. (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates Bioinformatics 20: 3005–12.

    Article  PubMed  CAS  Google Scholar 

  31. Tost, J., and Gut, I. G. (2007) DNA methylation analysis by pyrosequencing Nat. Protoc. 2: 2265–75.

    Article  PubMed  CAS  Google Scholar 

  32. Dejeux, E., El abdalaoui, H., Gut, I. G., and Tost, J. (2009) Identification and quantification of differentially methylated loci by the pyrosequencing technology Methods Mol. Biol. 507: 189–205.

    Google Scholar 

  33. Li, L. C., and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs Bioinformatics 18: 1427–31.

    Article  PubMed  CAS  Google Scholar 

  34. Tusnády, G. E., Simon, I., Váradi, A., and Arányi, T. (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes Nucl. Acids Res. 33: e9.

    Article  PubMed  Google Scholar 

  35. Smit, A. F. A., Hubley, R., and Green, P. (1996–2004) RepeatMasker Open-3.0 <http://www.repeatmasker.org>.

  36. Wojdacz, T. K., Hansen, L. L., and Dobrovic, A. (2008) A new approach to primer design for the control of PCR bias in methylation studies BMC Res. Notes 1: 54.

    Article  PubMed  Google Scholar 

  37. Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C. L., and Clark, S. J. (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA Nucl. Acids Res. 25: 4422–6.

    Article  PubMed  CAS  Google Scholar 

  38. Schuffler, P., Mikeska, T., Waha, A., Lengauer, T., and Bock, C. (2009) MethMarker: User-friendly design and optimization of gene-specific DNA methylation assays Genome Biol. 10: R105.

    Article  PubMed  Google Scholar 

  39. Kristensen, L. S., Mikeska, T., Krypuy, M., and Dobrovic, A. (2008) Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection Nucleic Acids Res. 36: e42.

    Article  PubMed  Google Scholar 

  40. Virmani, A. K., Tsou, J. A., Siegmund, K. D., et al. (2002) Hierarchical clustering of lung cancer cell lines using DNA methylation markers Cancer Epidemiol. Biomarkers Prev. 11: 291–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ida Candiloro and Phillip Hudson (Qiagen) for critical reading of this manuscript and helpful discussions. We acknowledge funding from the National Breast Cancer Foundation (Australia), the Cancer Council of Victoria, the Victorian Cancer Agency, the CLL Global Research Foundation, and the Susan G. Komen for the Cure Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mikeska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mikeska, T., Felsberg, J., Hewitt, C.A., Dobrovic, A. (2011). Analysing DNA Methylation Using Bisulphite Pyrosequencing. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics