Skip to main content

Isolation and Proteomic Analysis of Platelets by SELDI-TOF MS

  • Protocol
  • First Online:
SELDI-TOF Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 818))

Abstract

Many growth factors, leukotrines, and biological ligands are not circulating free in plasma or serum, except in the case of late or disseminated disease. During early tumor growth and angiogenesis, platelets actively and selectively sequester regulators of angiogenesis and, as such, the platelet protein content can be used as a marker of early tumor growth or angiogenesis. With the recent increase in the clinical use of biologic modifiers in cancer and chronic disease therapy, the search for markers of early disease, therapeutic response, and/or recurrence has suggested that analysis of platelet proteins may be more relevant and accurate. We provide a guideline for the proteomic analysis of platelet proteome, placing specific emphasis on angiogenesis regulators, even though other platelet proteins may serve as markers of disease in the future. The analysis of serum/plasma has been fraught with difficulties because of the extraordinarily large number of proteins and because some of the proteins are contained in extraordinarily large amounts, masking the less abundant proteins. Thus, platelets may provide a much more biologically relevant analyte for biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Coag:

Coagulation, referring to a test used to measure coagulation time of whole blood

EGF:

Epidermal growth factor

Fbgn:

Fibrinogen

bFGF:

Basic fibroblast growth factor

PGE:

Prostaglandin

PRP:

Platelet rich plasma

PDGF:

Platelet derived growth factor

PPP:

Platelet poor plasma

SELDI-TOF MS:

Surface enhanced laser desorption/ionization – time-of-flight mass spectrometry

SPA:

Sinapinic acid

TFA:

Trifluoroacetic acid

VEGF:

Vascular endothelial growth factor

References

  1. Krueger, K.E. 2006. The potential of serum proteomics for detection of cancer: promise or only hope? Onkologie. 29:498–499.

    Article  PubMed  Google Scholar 

  2. Huang, L.J., Chen, S.X., Huang, Y., Luo, W.J., Jiang, H.H., Hu, Q.H., Zhang, P.F., and Yi, H. 2006. Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer. 54:87–94.

    Article  PubMed  Google Scholar 

  3. Barker, P.E., Wagner, P.D., Stein, S.E., Bunk, D.M., Srivastava, S., and Omenn, G.S. 2006. Standards for plasma and serum proteomics in early cancer detection: a needs assessment report from the national institute of standards and technology--National Cancer Institute Standards, Methods, Assays, Reagents and Technologies Workshop, August 18–19, 2005. Clin Chem. 52:1669–1674.

    Article  PubMed  CAS  Google Scholar 

  4. Kawada, N. 2006. Cancer serum proteomics in gastroenterology. Gastroenterology. 130:1917–1919.

    Article  PubMed  CAS  Google Scholar 

  5. Wu, G.H., Wang, Y.M., Yen, A.M., Wong, J.M., Lai, H.C., Warwick, J., and Chen, T.H. 2006. Cost-effectiveness analysis of colorectal cancer screening with stool DNA testing in intermediate-incidence countries. BMC. Cancer. 6:136.

    Article  PubMed  Google Scholar 

  6. Lim, S.B., Jeong, S.Y., Kim, I.J., Kim, D.Y., Jung, K.H., Chang, H.J., Choi, H.S., Sohn, D.K., Kang, H.C., Shin, Y. et al 2006. Analysis of microsatellite instability in stool DNA of patients with colorectal cancer using denaturing high performance liquid chromatography. World J Gastroenterol. 12:6689–6692.

    PubMed  CAS  Google Scholar 

  7. Half, E.E., and Lynch, P.M. 2006. Mutated DNA in the stool--does it have a role in colorectal cancer screening? Nat. Clin Pract. Gastroenterol. Hepatol. 3:594–595.

    Article  PubMed  Google Scholar 

  8. Zou, H., Harrington, J.J., Klatt, K.K., and Ahlquist, D.A. 2006. A sensitive method to quantify human long DNA in stool: relevance to colorectal cancer screening. Cancer Epidemiol. Biomarkers Prev. 15:1115–1119.

    Article  PubMed  CAS  Google Scholar 

  9. Watanabe, T., Kobunai, T., Toda, E., Yamamoto, Y., Kanazawa, T., Kazama, Y., Tanaka, J., Tanaka, T., Konishi, T., Okayama, Y. et al 2006. Distal colorectal cancers with microsatellite instability (MSI) display distinct gene expression profiles that are different from proximal MSI cancers. Cancer Res. 66:9804–9808.

    Article  PubMed  CAS  Google Scholar 

  10. Kreike, B., Halfwerk, H., Kristel, P., Glas, A., Peterse, H., Bartelink, H., and van, d., V 2006. Gene expression profiles of primary breast carcinomas from patients at high risk for local recurrence after breast-conserving therapy. Clin Cancer Res. 12:5705–5712.

    Google Scholar 

  11. Chang, Y., and Liu, B. 2006. Difference of gene expression profiles between Barrett’s esophagus and cardia intestinal metaplasia by gene chip. J Huazhong. Univ Sci. Technolog. Med. Sci. 26:311–313.

    Article  PubMed  CAS  Google Scholar 

  12. Asgharzadeh, S., Pique-Regi, R., Sposto, R., Wang, H., Yang, Y., Shimada, H., Matthay, K., Buckley, J., Ortega, A., and Seeger, R.C. 2006. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl. Cancer Inst. 98:1193–1203.

    Article  PubMed  CAS  Google Scholar 

  13. Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Atayde, A.R., Sallan, S.E., Tedrow, U., Connors, S., Allred, E., and Folkman, J. 1997. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol. 150:815–821.

    PubMed  CAS  Google Scholar 

  15. Ribatti, D., Vacca, A., Nico, B., Quondamatteo, F., Ria, R., Minischetti, M., Marzullo, A., Herken, R., Roncali, L., and Dammacco, F. 1999. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br. J. Cancer. 79:451–455.

    Article  PubMed  CAS  Google Scholar 

  16. Fuhrmann-Benzakein, E., Ma, M.N., Rubbia-Brandt, L., Mentha, G., Ruefenacht, D., Sappino, A.P., and Pepper, M.S. 2000. Elevated levels of angiogenic cytokines in the plasma of cancer patients. Int. J. Cancer. 85:40–45.

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen, M. 1997. Angiogenic factors as tumor markers. Invest New Drugs. 15:29–37.

    Article  PubMed  CAS  Google Scholar 

  18. Dosquet, C., Coudert, M.C., Lepage, E., Cabane, J., and Richard, F. 1997. Are angiogenic factors, cytokines, and soluble adhesion molecules prognostic factors in patients with renal cell carcinoma? Clin. Cancer Res. 3:2451–2458.

    PubMed  CAS  Google Scholar 

  19. Abendstein, B., Daxenbichler, G., Windbichler, G., Zeimet, A.G., Geurts, A., Sweep, F., and Marth, C. 2000. Predictive value of uPA, PAI-1, HER-2 and VEGF in the serum of ovarian cancer patients. Anticancer Res. 20:569–572.

    PubMed  CAS  Google Scholar 

  20. Wong, A.K., Alfert, M., Castrillon, D.H., Shen, Q., Holash, J., Yancopoulos, G.D., and Chin, L. 2001. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl. Acad. Sci. USA 98:7481–7486.

    Article  PubMed  CAS  Google Scholar 

  21. Rak, J., Klement, P., and Yu, J. 2006. Genetic determinants of cancer coagulopathy, angiogenesis and disease progression. Vnitr. Lek. 52 Suppl 1:135–138.

    PubMed  CAS  Google Scholar 

  22. Johnson, R.A., and Roodman, G.D. 1989. Hematologic manifestations of malignancy. Dis. Mon. 35:721–768.

    Article  PubMed  CAS  Google Scholar 

  23. Langer, H., May, A.E., Daub, K., Heinzmann, U., Lang, P., Schumm, M., Vestweber, D., Massberg, S., Schonberger, T., Pfisterer, I. et al 2006. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ. Res. 98:e2–10.

    Article  PubMed  CAS  Google Scholar 

  24. Werther, K., Bulow, S., Hesselfeldt, P., Jespersen, N.F., Svendsen, M.N., and Nielsen, H.J. 2002. VEGF concentrations in tumour arteries and veins from patients with rectal cancer. APMIS. 110:646–650.

    Article  PubMed  CAS  Google Scholar 

  25. Verheul, H.M., and Pinedo, H.M. 1998. Tumor Growth: A Putative Role for Platelets? Oncologist. 3:II.

    Google Scholar 

  26. Verheul, H.M., Hoekman, K., Luykx-de Bakker, S., Eekman, C.A., Folman, C.C., Broxterman, H.J., and Pinedo, H.M. 1997. Platelet: transporter of vascular endothelial growth factor. Clin. Cancer Res. 3:2187–2190.

    PubMed  CAS  Google Scholar 

  27. Klement, G., Yip, T.-T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V.N., Italiano, J.E., Jr., Wheatley, E., Abou-Slaybi, A., Bender, E. et al 2009. Platelets actively sequester angiogenesis regulators. Blood. 113:2835–2842.

    Article  PubMed  CAS  Google Scholar 

  28. Italiano, J., Richardson, J.L., Folkman, J., and Klement, G. 2006. Blood Platelets Organize Pro- and Anti-Angiogenic Factors into Separate, Distinct Alpha Granules: Implications for the Regulation of Angiogenesis. ASH Annual Meeting Abstracts. 108:393.

    Google Scholar 

  29. Cervi, D., Yip, T.T., Bhattacharya, N., Podust, V.N., Peterson, J., bou-Slaybi, A., Naumov, G.N., Bender, E., Almog, N., Italiano, J.E.J. et al 2008. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 111:1201–1207.

    Google Scholar 

  30. Cervi, D., Yip, T.T., Bhattacharya, N., Podust, V.N., Peterson, J., bou-Slaybi, A., Naumov, G.N., Bender, E., Almog, N., Italiano, J.E.J. et al 2008. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 111:1201–1207.

    Google Scholar 

  31. Anderson, N.L., and Anderson, N.G. 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 1:845–867.

    Article  PubMed  CAS  Google Scholar 

  32. Davi, G., and Patrono, C. 2007. Platelet Activation and Atherothrombosis. N Engl J Med. 357:2482–2494.

    Article  PubMed  CAS  Google Scholar 

  33. Michelson A.D. 2002. Platelets. Elsevier Science, Academic Press. San Diego, California, USA.

    Google Scholar 

  34. Hantgan, R.R., Taylor, R.G., and Lewis, J.C. 1985. Platelets interact with fibrin only after activation. Blood. 65:1299–1311.

    PubMed  CAS  Google Scholar 

  35. Addonizio, V.P., Jr., Fisher, C.A., Strauss, J.F., III, Wachtfogel, Y.T., Colman, R.W., and Josephson, M.E. 1986. Effects of verapamil and diltiazem on human platelet function. Am J Physiol Heart Circ Physiol. 250:H366-H371.

    CAS  Google Scholar 

  36. 2004. The Laboratory Mouse (Handbook of Experimental Animals). Elsevier Academic Press. London.

    Google Scholar 

  37. Vermeulen, R., Lan, Q., Zhang, L., Gunn, L., McCarthy, D., Woodbury, R.L., McGuire, M., Podust, V.N., Li, G., Chatterjee, N. et al 2005. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics. Proc. Natl. Acad. Sci. USA. 102:17041–17046.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Downing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Downing, S.R., Klement, G.L. (2012). Isolation and Proteomic Analysis of Platelets by SELDI-TOF MS. In: Clarke, C., McCarthy, D. (eds) SELDI-TOF Mass Spectrometry. Methods in Molecular Biology, vol 818. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-418-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-418-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-417-9

  • Online ISBN: 978-1-61779-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics