Skip to main content

MuSK: A Kinase Critical for the Formation and Maintenance of the Neuromuscular Junction

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

Abstract

Muscle-specific kinase (MuSK) is a RTK that is specifically expressed in skeletal muscle fibers and critical for the formation and maintenance of the neuromuscular junction (NMJ), a peripheral synapse formed between motoneurons and muscle fibers (1, 2). The acetylcholine receptors (AChRs) are concentrated at the crest of junctional folds on muscle fibers, critical for muscle contraction. Impaired NMJ formation or function inflicts muscular dystrophy. Being large and accessible, this peripheral synapse has served as a classic model of synapse function and synaptogenesis and has contributed a great deal to the understanding of molecular mechanisms of synapse formation in the brain. In this chapter, we will review the structures of MuSK in various vertebrates, its role in NMJ formation and maintenance, possible pathways that have been suggested by recent studies, and how MuSK may be a target in muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017–1033

    Article  PubMed  CAS  Google Scholar 

  2. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  PubMed  CAS  Google Scholar 

  3. Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from torpedo electric organ. J Cell Biol 105:2471–2478

    Article  PubMed  CAS  Google Scholar 

  4. McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418

    Article  PubMed  CAS  Google Scholar 

  5. Reist NE, Werle MJ, McMahan UJ (1992) Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8:865–868

    Article  PubMed  CAS  Google Scholar 

  6. Wallace BG (1995) Regulation of the interaction of nicotinic acetylcholine receptors with the cytoskeleton by agrin-activated protein tyrosine kinase. J Cell Biol 128:1121–1129

    Article  PubMed  CAS  Google Scholar 

  7. Qu ZC, Moritz E, Huganir RL (1990) Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron 4:367–378

    Article  PubMed  CAS  Google Scholar 

  8. Qu Z, Huganir RL (1994) Comparison of innervation and agrin-induced tyrosine phosphorylation of the nicotinic acetylcholine receptor. J Neurosci 14:6834–6841

    PubMed  CAS  Google Scholar 

  9. Barbacid M (1993) Nerve growth factor: a tale of two receptors. Oncogene 8:2033–2042

    PubMed  CAS  Google Scholar 

  10. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  11. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR et al (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15:573–584

    Article  PubMed  CAS  Google Scholar 

  12. Ganju P, Walls E, Brennan J, Reith AD (1995) Cloning and developmental expression of Nsk2, a novel receptor tyrosine kinase implicated in skeletal myogenesis. Oncogene 11:281–290

    PubMed  CAS  Google Scholar 

  13. Green JL, Kuntz SG, Sternberg PW (2008) Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol 18:536–544

    Article  PubMed  CAS  Google Scholar 

  14. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115

    Article  PubMed  Google Scholar 

  15. Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y (2008) Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 283:27973–27981

    Article  PubMed  CAS  Google Scholar 

  16. Fu AK, Smith FD, Zhou H, Chu AH, Tsim KW, Peng BH, Ip NY (1999) Xenopus muscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development. Eur J Neurosci 11:373–382

    Article  PubMed  CAS  Google Scholar 

  17. Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, Yancopoulos GD, Ip NY (2000) Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci 16:661–673

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Lefebvre JL, Zhao S, Granato M (2004) Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat Neurosci 7:1303–1309

    Article  PubMed  CAS  Google Scholar 

  19. Husain N, Pellikka M, Hong H, Klimentova T, Choe KM, Clandinin TR, Tepass U (2006) The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the drosophila retina. Dev Cell 11:483–493

    Article  PubMed  CAS  Google Scholar 

  20. Jing L, Gordon LR, Shtibin E, Granato M (2010) Temporal and spatial requirements of unplugged/MuSK function during zebrafish neuromuscular development. PLoS One 5:e8843

    Article  PubMed  Google Scholar 

  21. Jing L, Lefebvre JL, Gordon LR, Granato M (2009) Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 61: 721–733

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y, Macke JP, Abella BS, Andreasson K, Worley P, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1996) A large family of putative transmembrane receptors homologous to the product of the drosophila tissue polarity gene frizzled. J Biol Chem 271:4468–4476

    Article  PubMed  CAS  Google Scholar 

  23. Zhou H, Glass DJ, Yancopoulos GD, Sanes JR (1999) Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146:1133–1146

    Article  PubMed  CAS  Google Scholar 

  24. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L (2002) Regulation of AChR clustering by dishevelled interacting with MuSK and PAK1. Neuron 35:489–505

    Article  PubMed  CAS  Google Scholar 

  25. Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG (2008) Wnt/beta-catenin signaling suppresses rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 283:21668–21675

    Article  PubMed  CAS  Google Scholar 

  26. Henriquez JP, Webb A, Bence M, Bildsoe H, Sahores M, Hughes SM, Salinas PC (2008) Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. Proc Natl Acad Sci USA 105:18812–18817

    Article  PubMed  CAS  Google Scholar 

  27. Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci USA 94:2859–2863

    Article  PubMed  CAS  Google Scholar 

  28. Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8:R407

    Article  PubMed  CAS  Google Scholar 

  29. Godfrey EW, Nitkin RM, Wallace BG, Rubin LL, McMahan UJ (1984) Components of torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol 99:615–627

    Article  PubMed  CAS  Google Scholar 

  30. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85: 525–535

    Article  PubMed  CAS  Google Scholar 

  31. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523

    Article  PubMed  CAS  Google Scholar 

  32. Sealock R, Wray BE, Froehner SC (1984) Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in torpedo postsynaptic membranes using monoclonal antibodies. J Cell Biol 98:2239–2244

    Article  PubMed  CAS  Google Scholar 

  33. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    Article  PubMed  CAS  Google Scholar 

  34. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 Serves as a coreceptor of agrin. Neuron 60:285–297

    Article  PubMed  CAS  Google Scholar 

  35. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for agrin and forms a complex with MuSK. Cell 135:334–342

    Article  PubMed  CAS  Google Scholar 

  36. Johnson EB, Hammer RE, Herz J (2005) Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14:3523–3538

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi YL, Tanaka SS, Kasa M, Yasuda K, Tam PP, Matsui Y (2006) Expression of low density lipoprotein receptor-related protein 4 (Lrp4) gene in the mouse germ cells. Gene Expr Patterns 6:607–612

    Article  PubMed  CAS  Google Scholar 

  38. Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000

    Article  PubMed  CAS  Google Scholar 

  39. Flanagan-Steet H, Fox MA, Meyer D, Sanes JR (2005) Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations. Development 132:4471–4481

    Article  PubMed  CAS  Google Scholar 

  40. Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46:569–579

    Article  PubMed  CAS  Google Scholar 

  41. Panzer JA, Song Y, Balice-Gordon RJ (2006) In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J Neurosci 26:934–947

    Article  PubMed  CAS  Google Scholar 

  42. Kim N, Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nat Neurosci 11:19–27

    Article  PubMed  CAS  Google Scholar 

  43. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410:1057–1064

    Article  PubMed  CAS  Google Scholar 

  44. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, Birchmeier C, Burden SJ (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410

    Article  PubMed  CAS  Google Scholar 

  45. Hesser BA, Henschel O, Witzemann V (2006) Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci 31:470–480

    Article  PubMed  CAS  Google Scholar 

  46. Glass DJ, Apel ED, Shah S, Bowen DC, DeChiara TM, Stitt TN, Sanes JR, Yancopoulos GD (1997) Kinase domain of the muscle-specific receptor tyrosine kinase (MuSK) is sufficient for phosphorylation but not clustering of acetylcholine receptors: required role for the MuSK ectodomain? Proc Natl Acad Sci USA 94:8848–8853

    Article  PubMed  CAS  Google Scholar 

  47. Jones G, Meier T, Lichtsteiner M, Witzemann V, Sakmann B, Brenner HR (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc Natl Acad Sci USA 94:2654–2659

    Article  PubMed  CAS  Google Scholar 

  48. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377:232–236

    Article  PubMed  CAS  Google Scholar 

  49. Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18:623–635

    Article  PubMed  CAS  Google Scholar 

  50. Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E, Cartaud J, Legay C (2004) MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J Cell Biol 165:505–515

    Article  PubMed  CAS  Google Scholar 

  51. Strochlic L, Cartaud A, Labas V, Hoch W, Rossier J, Cartaud J (2001) MAGI-1c: a synaptic MAGUK interacting with muSK at the vertebrate neuromuscular junction. J Cell Biol 153:1127–1132

    Article  PubMed  CAS  Google Scholar 

  52. Fuhrer C, Sugiyama JE, Taylor RG, Hall ZW (1997) Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle. EMBO J 16:4951–4960

    Article  PubMed  CAS  Google Scholar 

  53. Strochlic L, Cartaud A, Mejat A, Grailhe R, Schaeffer L, Changeux JP, Cartaud J (2004) 14-3-3 Gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. Proc Natl Acad Sci USA 101:18189–18194

    Article  PubMed  CAS  Google Scholar 

  54. Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995

    Article  PubMed  CAS  Google Scholar 

  55. Zhu D, Yang Z, Luo Z, Luo S, Xiong WC, Mei L (2008) Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin. J Neurosci 28:1688–1696

    Article  PubMed  CAS  Google Scholar 

  56. Bromann PA, Weiner JA, Apel ED, Lewis RM, Sanes JR (2004) A putative ariadne-like E3 ubiquitin ligase (PAUL) that interacts with the muscle-specific kinase (MuSK). Gene Expr Patterns 4:77–84

    Article  PubMed  CAS  Google Scholar 

  57. Lu Z, Je HS, Young P, Gross J, Lu B, Feng G (2007) Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. J Cell Biol 177:1077–1089

    Article  PubMed  CAS  Google Scholar 

  58. Watty A, Neubauer G, Dreger M, Zimmer M, Wilm M, Burden SJ (2000) The in vitro and in vivo phosphotyrosine map of activated MuSK. Proc Natl Acad Sci USA 97:4585–4590

    Article  PubMed  CAS  Google Scholar 

  59. van der Geer P, Pawson T (1995) The PTB domain: a new protein module implicated in signal transduction. Trends Biochem Sci 20:277–280

    Article  PubMed  Google Scholar 

  60. Borg JP, Margolis B (1998) Function of PTB domains. Curr Top Microbiol Immunol 228:23–38

    Article  PubMed  CAS  Google Scholar 

  61. Herbst R, Burden SJ (2000) The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J 19:67–77

    Article  PubMed  CAS  Google Scholar 

  62. Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  PubMed  CAS  Google Scholar 

  63. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259

    Article  PubMed  CAS  Google Scholar 

  64. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24:473–486

    Article  PubMed  CAS  Google Scholar 

  65. Luo ZG, Je HS, Wang Q, Yang F, Dobbins GC, Yang ZH, Xiong WC, Lu B, Mei L (2003) Implication of geranylgeranyltransferase I in synapse formation. Neuron 40:703–717

    Article  PubMed  CAS  Google Scholar 

  66. Lee CW, Han J, Bamburg JR, Han L, Lynn R, Zheng JQ (2009) Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat Neurosci 12:848–856

    Article  PubMed  CAS  Google Scholar 

  67. Smith CL, Mittaud P, Prescott ED, Fuhrer C, Burden SJ (2001) Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 21:3151–3160

    PubMed  CAS  Google Scholar 

  68. Mohamed AS, Rivas-Plata KA, Kraas JR, Saleh SM, Swope SL (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J Neurosci 21:3806–3818

    PubMed  CAS  Google Scholar 

  69. Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T, Jacob G, Sticht H, Allende J, Boldyreff B, Brenner HR, Hashemolhosseini S (2006) Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes Dev 20:1800–1816

    Article  PubMed  CAS  Google Scholar 

  70. Luo S, Zhang B, Dong XP, Tao Y, Ting A, Zhou Z, Meixiong J, Luo J, Chiu FC, Xiong WC, Mei L (2008) HSP90 beta regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 60:97–110

    Article  PubMed  CAS  Google Scholar 

  71. Wang J, Jing Z, Zhang L, Zhou G, Braun J, Yao Y, Wang ZZ (2003) Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat Neurosci 6:1017–1018

    Article  PubMed  CAS  Google Scholar 

  72. Dobbins GC, Luo S, Yang Z, Xiong WC, Mei L (2008) Alpha-actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol Brain 1:18

    Article  PubMed  Google Scholar 

  73. Chen F, Qian L, Yang ZH, Huang Y, Ngo ST, Ruan NJ, Wang J, Schneider C, Noakes PG, Ding YQ, Mei L, Luo ZG (2007) Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55:247–260

    Article  PubMed  CAS  Google Scholar 

  74. Fu AK, Ip FC, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci USA 102:15224–15229

    Article  PubMed  CAS  Google Scholar 

  75. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312(5781):1802–1805

    Article  PubMed  CAS  Google Scholar 

  76. Hamuro J, Higuchi O, Okada K, Ueno M, Iemura S, Natsume T, Spearman H, Beeson D, Yamanashi Y (2008) Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 283:5518–5524

    Article  PubMed  CAS  Google Scholar 

  77. Hallock PT, Xu CF, Park TJ, Neubert TA, Curran T, Burden SJ (2010) Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev 24:2451–2461

    Article  PubMed  CAS  Google Scholar 

  78. Linnoila J, Wang Y, Yao Y, Wang ZZ (2008) A mammalian homolog of drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60:625–641

    Article  PubMed  CAS  Google Scholar 

  79. Finn AJ, Feng G, Pendergast AM (2003) Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction. Nat Neurosci 6:717–723

    Article  PubMed  CAS  Google Scholar 

  80. Weston C, Yee B, Hod E, Prives J (2000) Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol 150:205–212

    Article  PubMed  CAS  Google Scholar 

  81. Weston CA, Teressa G, Weeks BS, Prives J (2007) Agrin and laminin induce acetylcholine receptor clustering by convergent, Rho GTPase-dependent signaling pathways. J Cell Sci 120:868–875

    Article  PubMed  CAS  Google Scholar 

  82. Peng HB, Xie H, Dai Z (1997) Association of cortactin with developing neuromuscular specializations. J Neurocytol 26:637–650

    Article  PubMed  CAS  Google Scholar 

  83. Webb BA, Zhou S, Eves R, Shen L, Jia L, Mak AS (2006) Phosphorylation of cortactin by p21-activated kinase. Arch Biochem Biophys 456:183–193

    Article  PubMed  CAS  Google Scholar 

  84. Jones N, Hardy WR, Friese MB, Jorgensen C, Smith MJ, Woody NM, Burden SJ, Pawson T (2007) Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase. Mol Cell Biol 27:4759–4773

    Article  PubMed  CAS  Google Scholar 

  85. Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5:308–321

    Article  PubMed  CAS  Google Scholar 

  86. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, Prioleau C, Herbst R, Goillot E, Ioos C, Azulay JP, Attarian S, Leroy JP, Fournier E, Legay C, Schaeffer L, Koenig J, Fardeau M, Eymard B, Pouget J, Hantai D (2004) MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 13:3229–3240

    Article  PubMed  CAS  Google Scholar 

  87. Vincent A, Li Z, Hart A, Barrett-Jolley R, Yamamoto T, Burges J, Wray D, Byrne N, Molenaar P, Newsom-Davis J (1993) Seronegative myasthenia gravis. Evidence for plasma factor(s) interfering with acetylcholine receptor function. Ann N Y Acad Sci 681:529–538

    Article  PubMed  CAS  Google Scholar 

  88. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368

    Article  PubMed  CAS  Google Scholar 

  89. Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A (2003) Clinical aspects of MuSK antibody positive seronegative MG. Neurology 60:1978–1980

    Article  PubMed  CAS  Google Scholar 

  90. Shigemoto K, Kubo S, Jie C, Hato N, Abe Y, Ueda N, Kobayashi N, Kameda K, Mominoki K, Miyazawa A, Ishigami A, Matsuda S, Maruyama N (2008) Myasthenia gravis experimentally induced with muscle-specific kinase. Ann N Y Acad Sci 1132:93–98

    Article  PubMed  CAS  Google Scholar 

  91. Xu K, Jha S, Hoch W, Dryer SE (2006) Delayed synapsing muscles are more severely affected in an experimental model of MuSK-induced myasthenia gravis. Neuroscience 143:655–659

    Article  PubMed  CAS  Google Scholar 

  92. Jha S, Xu K, Maruta T, Oshima M, Mosier DR, Atassi MZ, Hoch W (2006) Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat muscle-specific kinase (MuSK). J Neuroimmunol 175:107–117

    Article  PubMed  CAS  Google Scholar 

  93. Punga AR, Maj M, Lin S, Meinen S, Ruegg MA (2011) MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 33:890–898

    Article  PubMed  Google Scholar 

  94. Cole RN, Reddel SW, Gervasio OL, Phillips WD (2008) Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol 63:782–789

    Article  PubMed  Google Scholar 

  95. Cole RN, Ghazanfari N, Ngo ST, Gervasio OL, Reddel SW, Phillips WD (2010) Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice. J Physiol 588:3217–3229

    Article  PubMed  CAS  Google Scholar 

  96. ter Beek WP, Martinez-Martinez P, Losen M, de Baets MH, Wintzen AR, Verschuuren JJ, Niks EH, van Duinen SG, Vincent A, Molenaar PC (2009) The effect of plasma from muscle-specific tyrosine kinase myasthenia patients on regenerating endplates. Am J Pathol 175:1536–1544

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barik, A., Xiong, Wc., Mei, L. (2012). MuSK: A Kinase Critical for the Formation and Maintenance of the Neuromuscular Junction. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics