Skip to main content

Detection and Characterisation of Alloreactive T Cells

  • Protocol
  • First Online:
Immunogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 882))

  • 5729 Accesses

Abstract

T cell alloreactivity is responsible for much of the morbidity and mortality associated with tissue transplantation and graft versus host disease. Immunoassays for ex vivo monitoring and quantitation of alloreactive T cells are being increasingly utilised to provide valuable information for individualised clinical management of transplant recipients. Here we describe detailed methodologies for both traditional and novel assays utilised for the detection, quantitation, and functional characterisation of alloreactive T cells and highlight the key advantages and disadvantages of each system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrows SR, Khanna R, Burrows JM, Moss DJ (1994) An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein–Barr virus CTL epitope: implications for graft-versus-host disease. J Exp Med 179(4):1155–1161

    Article  PubMed  CAS  Google Scholar 

  2. Brunner KT, Mauel J, Cerottini JC, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14(2):181–196

    PubMed  CAS  Google Scholar 

  3. Lefkovits I (1972) Induction of antibody-forming cell clones in microcultures. Eur J Immunol 2(4):360–366

    Article  PubMed  CAS  Google Scholar 

  4. Lefkovits I, Waldmann H (1984) Limiting dilution analysis of cells of the immune system I. The clonal basis of the immune response. Immunol Today 5:265–268

    Article  Google Scholar 

  5. Waldmann H, Lefkovits I (1984) Limiting dilution analysis of cells of the immune system II: what can be learnt? Immunol Today 5:295–298

    Article  Google Scholar 

  6. Sharrock CE, Kaminski E, Man S (1990) Limiting dilution analysis of human T cells: a useful clinical tool. Immunol Today 11(8):281–286

    Article  PubMed  CAS  Google Scholar 

  7. Hickling JK (1998) Measuring human T-lymphocyte function. Expert Rev Mol Med 1:1–20

    Article  Google Scholar 

  8. Kaminski E, Hows J, Brookes P, Mackinnon S, Hughes T, Avakian O et al (1989) Alloreactive cytotoxic T-cell frequency analysis and HLA matching for bone marrow transplants from HLA matched unrelated donors. Transplant Proc 21(1 Pt 3):2976–2977

    PubMed  CAS  Google Scholar 

  9. Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE, Clements CS et al (2009) T cell allorecognition via molecular mimicry. Immunity 31(6):897–908

    Article  PubMed  CAS  Google Scholar 

  10. Bharadwaj M, Thammanichanond D, Aitken CK, Moneer S, Drummer HE, Tracy S et al (2009) TCD8 response in diverse outcomes of recurrent exposure to hepatitis C virus. Immunol Cell Biol 87(6):464–472

    Article  PubMed  CAS  Google Scholar 

  11. Bharadwaj M, Burrows SR, Burrows JM, Moss DJ, Catalina M, Khanna R (2001) Longitudinal dynamics of antigen-specific CD8+ cytotoxic T lymphocytes following primary Epstein–Barr virus infection. Blood 98(8):2588–2589

    Article  PubMed  CAS  Google Scholar 

  12. Kaminski E, Hows J, Man S, Brookes P, Mackinnon S, Hughes T et al (1989) Prediction of graft versus host disease by frequency analysis of cytotoxic T cells after unrelated donor bone marrow transplantation. Transplantation 48(4):608–613

    PubMed  CAS  Google Scholar 

  13. Schwarer AP, Jiang YZ, Deacock S, Brookes PA, Barrett AJ, Goldman JM et al (1994) Comparison of helper and cytotoxic antirecipient T cell frequencies in unrelated bone marrow transplantation. Transplantation 58(11):1198–1203

    Article  PubMed  CAS  Google Scholar 

  14. Roelen DL, Stobbe I, Young NT, van Bree SP, Doxiadis II, Oudshoorn M et al (2001) Permissible and immunogenic HLA-A mismatches: cytotoxic T-cell precursor frequencies reflect graft survival data. Hum Immunol 62(7):661–667

    Article  PubMed  CAS  Google Scholar 

  15. Dolezalova L, Vrana M, Dobrovolna M, Loudova M, Cukrova V, Vitek A et al (2002) Cytotoxic T lymphocyte precursor frequency analysis in the selection of HLA matched unrelated donors for hematopoietic stem cell transplantation: the correlation of CTLp frequency with HLA class I genotyping and aGVHD development. Neoplasma 49(1):26–32

    PubMed  CAS  Google Scholar 

  16. Fussell ST, Donnellan M, Cooley MA, Farrell C (1994) Cytotoxic T lymphocyte precursor frequency does not correlate with either the incidence or severity of graft-versus-host disease after matched unrelated donor bone marrow transplantation. Transplantation 57(5):673–676

    Article  PubMed  CAS  Google Scholar 

  17. Eberspacher ML, Otto G, Herfarth C, Kabelitz D (1994) Frequency analysis of donor-reactive cytotoxic T lymphocyte precursors in in allograft recipients. Lack of correlation with clinical outcome. Transplantation 57(12):1746–1752

    PubMed  CAS  Google Scholar 

  18. Wang XN, Taylor PR, Skinner R, Jackson GH, Proctor SJ, Hedley D et al (2000) T-cell frequency analysis does not predict the incidence of graft-versus-host disease in HLA-matched sibling bone marrow transplantation. Trans­plantation 70(3):488–493

    Article  PubMed  CAS  Google Scholar 

  19. Tan LC, Gudgeon N, Annels NE, Hansasuta P, O’Callaghan CA, Rowland-Jones S et al (1999) A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J Immunol 162(3):1827–1835

    PubMed  CAS  Google Scholar 

  20. Lalvani A, Brookes R, Hambleton S, Britton WJ, Hill AV, McMichael AJ (1997) Rapid effector function in CD8+ memory T cells. J Exp Med 186(6):859–865

    Article  PubMed  CAS  Google Scholar 

  21. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD et al (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8(2):177–187

    Article  PubMed  CAS  Google Scholar 

  22. Kuzushima K, Hoshino Y, Fujii K, Yokoyama N, Fujita M, Kiyono T et al (1999) Rapid determination of Epstein–Barr virus-specific CD8(+) T-cell frequencies by flow cytometry. Blood 94(9):3094–3100

    PubMed  CAS  Google Scholar 

  23. Hernandez-Fuentes MP, Warrens AN, Lechler RI (2003) Immunologic monitoring. Immunol Rev 196:247–264

    Article  PubMed  CAS  Google Scholar 

  24. Miyahira Y, Murata K, Rodriguez D, Rodriguez JR, Esteban M, Rodrigues MM et al (1995) Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181(1):45–54

    Article  PubMed  CAS  Google Scholar 

  25. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O (1988) Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secreting cells. J Immunol Methods 110(1):29–36

    Article  PubMed  CAS  Google Scholar 

  26. Elliott SL, Suhrbier A, Miles JJ, Lawrence G, Pye SJ, Le TT et al (2008) Phase I trial of a CD8+ T-cell peptide epitope-based vaccine for infectious mononucleosis. J Virol 82(3):1448–1457

    Article  PubMed  CAS  Google Scholar 

  27. Scheibenbogen C, Romero P, Rivoltini L, Herr W, Schmittel A, Cerottini JC et al (2000) Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods 244(1–2):81–89

    Article  PubMed  CAS  Google Scholar 

  28. Pelfrey CM, Rudick RA, Cotleur AC, Lee JC, Tary-Lehmann M, Lehmann PV (2000) Quantification of self-recognition in multiple sclerosis by single-cell analysis of cytokine production. J Immunol 165(3):1641–1651

    PubMed  CAS  Google Scholar 

  29. Bestard O, Nickel P, Cruzado JM, Schoenemann C, Boenisch O, Sefrin A et al (2008) Circulating alloreactive T cells correlate with graft function in longstanding renal transplant recipients. J Am Soc Nephrol 19(7):1419–1429

    Article  PubMed  Google Scholar 

  30. Sherritt MA, Bharadwaj M, Burrows JM, Morrison LE, Elliott SL, Davis JE et al (2003) Reconstitution of the latent T-lymphocyte response to Epstein–Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation 75(9):1556–1560

    Article  PubMed  Google Scholar 

  31. Gazagne A, Claret E, Wijdenes J, Yssel H, Bousquet F, Levy E et al (2003) A Fluorospot assay to detect single T lymphocytes simultaneously producing multiple cytokines. J Immunol Methods 283(1–2):91–98

    Article  PubMed  CAS  Google Scholar 

  32. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96

    Article  PubMed  CAS  Google Scholar 

  33. McMichael AJ, O’Callaghan CA (1998) A new look at T cells. J Exp Med 187(9):1367–1371

    Article  PubMed  CAS  Google Scholar 

  34. Ogg GS, McMichael AJ (1998) HLA-peptide tetrameric complexes. Curr Opin Immunol 10(4):393–396

    Article  PubMed  CAS  Google Scholar 

  35. Miles JJ, Thammanichanond D, Moneer S, Nivarthi UK, Kjer-Nielsen L, Tracy SL et al (2011) Antigen-driven patterns of TCR bias are shared across diverse outcomes of human hepatitis C virus infection. J Immunol 186(2):901–912

    Article  PubMed  CAS  Google Scholar 

  36. James EA, LaFond R, Durinovic-Bello I, Kwok W (2009) Visualizing antigen specific CD4+ T cells using MHC class II tetramers. J Vis Exp (25) pii:1167

    Google Scholar 

  37. Landais E, Romagnoli PA, Corper AL, Shires J, Altman JD, Wilson IA et al (2009) New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. J Immunol 183(12):7949–7957

    Article  PubMed  CAS  Google Scholar 

  38. Vollers SS, Stern LJ (2008) Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 123(3):305–313

    Article  PubMed  CAS  Google Scholar 

  39. Raddassi K, Kent SC, Yang J, Bourcier K, Bradshaw EM, Seyfert-Margolis V et al (2011) Increased frequencies of myelin oligodendrocyte glycoprotein/MHC class II-binding CD4 cells in patients with multiple sclerosis. J Immunol 187(2):1039–1046

    Article  PubMed  CAS  Google Scholar 

  40. Laughlin E, Burke G, Pugliese A, Falk B, Nepom G (2008) Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin Immunol 128(1):23–30

    Article  PubMed  CAS  Google Scholar 

  41. Bonvalet M, Wambre E, Moussu H, Horiot S, Kwok WW, Louise A et al (2011) Comparison between major histocompatibility complex class II tetramer staining and surface expression of activation markers for the detection of allergen-specific CD4(+) T cells. Clin Exp Allergy 41(6):821–829

    Article  PubMed  CAS  Google Scholar 

  42. Ayyoub M, Dojcinovic D, Pignon P, Raimbaud I, Schmidt J, Luescher I et al (2010) Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proc Natl Acad Sci USA 107(16):7437–7442

    Article  PubMed  CAS  Google Scholar 

  43. Cusick MF, Yang M, Gill JC, Eckels DD (2011) Naturally occurring CD4+ T-cell epitope variants act as altered peptide ligands leading to impaired helper T-cell responses in hepatitis C virus infection. Hum Immunol 72(5):379–385

    Article  PubMed  CAS  Google Scholar 

  44. Sun Y, Iglesias E, Samri A, Kamkamidze G, Decoville T, Carcelain G et al (2003) A systematic comparison of methods to measure HIV-1 specific CD8 T cells. J Immunol Methods 272(1–2):23–34

    Article  PubMed  CAS  Google Scholar 

  45. McMichael AJ, Ogg G, Wilson J, Callan M, Hambleton S, Appay V et al (2000) Memory CD8+ T cells in HIV infection. Philos Trans R Soc Lond B Biol Sci 2355(1395):363–367

    Google Scholar 

  46. Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S et al (1998) Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279(5359):2103–2106

    Article  PubMed  CAS  Google Scholar 

  47. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA et al (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus In vivo. J Exp Med 187(9):1395–1402

    Article  PubMed  CAS  Google Scholar 

  48. Mifsud NA, Nguyen TH, Tait BD, Kotsimbos TC (2010) Quantitative and functional diversity of cross-reactive EBV-specific CD8+ T cells in a longitudinal study cohort of lung transplant recipients. Transplantation 90(12):1439–1449

    Article  PubMed  Google Scholar 

  49. Nguyen TH, Sullivan LC, Kotsimbos TC, Schwarer AP, Mifsud NA (2010) Cross-presentation of HCMV chimeric protein enables generation and measurement of polyclonal T cells. Immunol Cell Biol 88(6):676–684

    Article  PubMed  CAS  Google Scholar 

  50. Pala P, Hussell T, Openshaw PJ (2000) Flow cytometric measurement of intracellular cytokines. J Immunol Methods 243(1–2):107–124

    Article  PubMed  CAS  Google Scholar 

  51. Prussin C, Metcalfe DD (1995) Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 188(1):117–128

    Article  PubMed  CAS  Google Scholar 

  52. Goulder PJ, Tang Y, Brander C, Betts MR, Altfeld M, Annamalai K et al (2000) Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J Exp Med 192(12):1819–1832

    Article  PubMed  CAS  Google Scholar 

  53. Asemissen AM, Nagorsen D, Keilholz U, Letsch A, Schmittel A, Thiel E et al (2001) Flow cytometric determination of intracellular or secreted IFNgamma for the quantification of antigen reactive T cells. J Immunol Methods 251(1–2):101–108

    Article  PubMed  CAS  Google Scholar 

  54. Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J (2003) Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res 9(2):641–649

    PubMed  CAS  Google Scholar 

  55. Koehne G, Smith KM, Ferguson TL, Williams RY, Heller G, Pamer EG et al (2002) Quantitation, selection, and functional characterization of Epstein–Barr virus-specific and alloreactive T cells detected by intracellular interferon-gamma production and growth of cytotoxic precursors. Blood 99(5):1730–1740

    Article  PubMed  CAS  Google Scholar 

  56. Waldrop SL, Pitcher CJ, Peterson DM, Maino VC, Picker LJ (1997) Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J Clin Invest 99(7):1739–1750

    Article  PubMed  CAS  Google Scholar 

  57. Mifsud NA, Purcell AW, Chen W, Holdsworth R, Tait BD, McCluskey J (2008) Immu­nodominance hierarchies and gender bias in direct T(CD8)-cell alloreactivity. Am J Transplant 8(1):121–132

    Article  PubMed  CAS  Google Scholar 

  58. Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W (2008) Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl 14(5):688–694

    Article  PubMed  Google Scholar 

  59. Elkington R, Walker S, Crough T, Menzies M, Tellam J, Bharadwaj M et al (2003) Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol 77(9):5226–5240

    Article  PubMed  CAS  Google Scholar 

  60. Taswell C (1981) Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol 126(4):1614–1619

    PubMed  CAS  Google Scholar 

  61. Strijbosch LW, Buurman WA, Does RJ, Zinken PH, Groenewegen G (1987) Limiting dilution assays. Experimental design and statistical analysis. J Immunol Methods 97(1):133–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Patricia Therese Illing, The University of Melbourne, Australia, for her help in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandvi Bharadwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bharadwaj, M., Mifsud, N.A., McCluskey, J. (2012). Detection and Characterisation of Alloreactive T Cells. In: Christiansen, F., Tait, B. (eds) Immunogenetics. Methods in Molecular Biology, vol 882. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-842-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-842-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-841-2

  • Online ISBN: 978-1-61779-842-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics