Skip to main content

Assessment of Gelatinases (MMP-2 and MMP-9) by Gelatin Zymography

  • Protocol
  • First Online:
Metastasis Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 878))

Abstract

Gelatin zymography is a simple yet powerful method to detect proteolytic enzymes capable of degrading gelatin from various biological sources. It is particularly useful for the assessment of two key members of the matrix metalloproteinase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), due to their potent gelatin-degrading activity. This polyacrylamide gel electrophoresis-based method can provide a reliable assessment of the type of gelatinase, relative amount, and activation status (latent, compared with active enzyme forms) in cultured cells, tissues, and biological fluids. The method can be used to investigate factors that regulate gelatinase expression and modulate zymogen activation in experimental systems. The system provides information on the pattern of gelatinase expression and activation in human cancer tissues and how this relates to cancer progression. Interpretation of the data obtained in gelatin zymography requires a thorough understanding of the principles and pitfalls of the technique; this is particularly important when evaluating enzyme levels and the presence of active gelatinase species. If properly used, gelatin zymography is an excellent tool for the study of gelatinases in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095

    PubMed  CAS  Google Scholar 

  2. Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860

    Article  PubMed  CAS  Google Scholar 

  3. Turpeenniemi-Hujanen T (2005) Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87:287–297

    Article  PubMed  CAS  Google Scholar 

  4. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34

    Article  PubMed  CAS  Google Scholar 

  5. Murphy G, Crabbe T (1995) Gelatinases A and B. Methods Enzymol 248:470–484

    Article  PubMed  CAS  Google Scholar 

  6. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206

    Article  PubMed  CAS  Google Scholar 

  7. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  PubMed  CAS  Google Scholar 

  8. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601

    Article  PubMed  CAS  Google Scholar 

  9. Chen X, Su Y, Fingleton B, Acuff H, Matrisian LM, Zent R, Pozzi A (2005) An orthotopic model of lung cancer to analyze primary and metastatic NSCLC growth in integrin alpha1-null mice. Clin Exp Metastasis 22:185–193

    Article  PubMed  Google Scholar 

  10. Bonfil RD, Sabbota A, Nabha S, Bernardo MM, Dong Z, Meng H, Yamamoto H, Chinni SR, Lim IT, Chang M, Filetti LC, Mobashery S, Cher ML, Fridman R (2006) Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. Int J Cancer 118:2721–2726

    Article  PubMed  CAS  Google Scholar 

  11. Deryugina EI, Quigley JP (2009) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803:103–120

    Article  PubMed  Google Scholar 

  12. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He CS, Bauer EA, Goldberg GI (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587

    PubMed  CAS  Google Scholar 

  13. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221

    PubMed  CAS  Google Scholar 

  14. Briknarova K, Gehrmann M, Banyai L, Tordai H, Patthy L, Llinas M (2001) Gelatin-binding region of human matrix metalloproteinase-2: solution structure, dynamics, and function of the COL-23 two-domain construct. J Biol Chem 276:27613–27621

    Article  PubMed  CAS  Google Scholar 

  15. Morgunova E, Tuuttila A, Bergmann U, Tryggvason K (2002) Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc Natl Acad Sci USA 99:7414–7419

    Article  PubMed  CAS  Google Scholar 

  16. Bode W (2003) Structural basis of matrix metalloproteinase function. Biochem Soc Symp 70:1–14

    PubMed  CAS  Google Scholar 

  17. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202

    Article  PubMed  CAS  Google Scholar 

  18. Woessner JF Jr (1995) Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol 248:510–528

    Article  PubMed  CAS  Google Scholar 

  19. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    PubMed  CAS  Google Scholar 

  20. Murphy G, Willenbrock F (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248:496–510

    Article  PubMed  CAS  Google Scholar 

  21. Olson MW, Gervasi DC, Mobashery S, Fridman R (1997) Kinetic analysis of the binding of human matrix metalloproteinase-2 and -9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272:29975–29983

    Article  PubMed  CAS  Google Scholar 

  22. Toth M, Bernardo MM, Gervasi DC, Soloway PD, Wang Z, Bigg HF, Overall CM, DeClerck YA, Tschesche H, Cher ML, Brown S, Mobashery S, Fridman R (2000) Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type 1)-MMP-dependent activation of pro-MMP-2. J Biol Chem 275:41415–41423

    Article  PubMed  CAS  Google Scholar 

  23. Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H, Kashiwagi M, Soloway PD, DeClerck YA, Fridman R (2004) Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J Biol Chem 279:8592–8601

    Article  PubMed  CAS  Google Scholar 

  24. Azzam HS, Arand G, Lippman ME, Thompson EW (1993) Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst 85:1758–1764

    Article  PubMed  CAS  Google Scholar 

  25. Lewalle JM, Munaut C, Pichot B, Cataldo D, Baramova E, Foidart JM (1995) Plasma membrane-dependent activation of gelatinase A in human vascular endothelial cells. J Cell Physiol 165:475–483

    Article  PubMed  CAS  Google Scholar 

  26. Gervasi DC, Raz A, Dehem M, Yang M, Kurkinen M, Fridman R (1996) Carbohydrate-mediated regulation of matrix metalloproteinase-2 activation in normal human fibroblasts and fibrosarcoma cells. Biochem Biophys Res Commun 228:530–538

    Article  PubMed  CAS  Google Scholar 

  27. Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308:386–395

    Article  PubMed  CAS  Google Scholar 

  28. Toth M, Osenkowski P, Hesek D, Brown S, Meroueh S, Sakr W, Mobashery S, Fridman R (2005) Cleavage at the stem region releases an active ectodomain of the membrane type 1 matrix metalloproteinase. Biochem J 387:497–506

    Article  PubMed  CAS  Google Scholar 

  29. Fridman R, Fuerst TR, Bird RE, Hoyhtya M, Oelkuct M, Kraus S, Komarek D, Liotta LA, Berman ML, Stetler-Stevenson WG (1992) Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J Biol Chem 267:15398–15405

    PubMed  CAS  Google Scholar 

  30. O’Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G (1994) Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem 269:14967–14973

    PubMed  Google Scholar 

  31. Pineiro-Sanchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Tran H, Argraves WS, Chen WT (1997) Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem 272:7595–7601

    Article  PubMed  CAS  Google Scholar 

  32. Toth M, Gervasi DC, Fridman R (1997) Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 57:3159–3167

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the ex-members of the Fridman lab for suggestions and tips throughout the years. This work has been supported by an NIH/NCI grant (R01 CA-61986) to R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Fridman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Toth, M., Sohail, A., Fridman, R. (2012). Assessment of Gelatinases (MMP-2 and MMP-9) by Gelatin Zymography. In: Dwek, M., Brooks, S., Schumacher, U. (eds) Metastasis Research Protocols. Methods in Molecular Biology, vol 878. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-854-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-854-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-853-5

  • Online ISBN: 978-1-61779-854-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics