Skip to main content

Compartmentalizing Genetically Encoded Calcium Sensors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 937))

Abstract

Within single cells there is a complex myriad of signaling which controls physiological process many of which are modulated, or signaled directly, by intracellular calcium ions. Understanding the exquisitely sensitive, and spatially restricted, changes in calcium has been of interest to the researcher for a number of years. Recent advances in this field have been driven by the development of genetically encoded calcium probes for detecting calcium changes within the cells specifically targeting organelles such as mitochondria, endoplasmic reticulum, and the nucleus. In this chapter the authors outline some of the available fluorescent probes, with particular emphasis on an endoplasmic reticulum targeted calcium biosensor in cell signaling studies with astrocytes, detailing experimental protocols and the interpretation of data from such probes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signal. Nature 395(6703):645–648

    Article  PubMed  CAS  Google Scholar 

  2. Bootman MD, Lipp P, Berridge MJ (2001) The organisation and functions of local Ca2+ signals. J Cell Sci 114(Pt 12):2213–2222

    PubMed  CAS  Google Scholar 

  3. Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386(6627):759–760

    Article  PubMed  CAS  Google Scholar 

  4. Matveev V, Bertram R, Sherman A (2011) Calcium cooperativity of exocytosis as a measure of Ca2+ channel domain overlap. Brain Res 1398:126–138

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  PubMed  CAS  Google Scholar 

  6. Bootman MD, Berridge MJ, Lipp P (1997) Cooking with calcium: the recipes for composing global signals from elementary events. Cell 91(3):367–373

    Article  PubMed  CAS  Google Scholar 

  7. Hirst RA et al (2006) Measurement of [Ca2+]i in whole cell suspensions using fura-2. Methods Mol Biol 312:37–45

    PubMed  Google Scholar 

  8. Llinás R, Sugimori M, Silver RB (1992) Presynaptic calcium concentration microdomains and transmitter release. J Physiol Paris 86(1–3):135–138

    Article  PubMed  Google Scholar 

  9. Chudakov DM et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  PubMed  CAS  Google Scholar 

  10. Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin-C and green fluorescent protein. J Biol Chem 279:14280–14286

    Article  PubMed  CAS  Google Scholar 

  11. Miyawaki A et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  PubMed  CAS  Google Scholar 

  12. Nagai T et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98(6):3197–3202

    Article  PubMed  CAS  Google Scholar 

  13. Sobie EA, Lederer WJ (2011) Dynamic local changes in sarcoplasmic reticulum calcium: physiological and pathophysiological roles. J Mol Cell Cardiol 52(2):304–311

    Article  PubMed  Google Scholar 

  14. Petrou S et al (2000) Genetically targeted calcium sensors enhance the study of organelle function in living cells. Clin Exp Pharmacol Physiol 27(9):738–744

    Article  PubMed  CAS  Google Scholar 

  15. Bowser DN et al (2002) Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake. FASEB J 16(9):1105–1107

    PubMed  CAS  Google Scholar 

  16. Palmer AE et al (2004) Bcl-2 mediated alterations in endoplasmic reticulum Ca2+ analysed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409

    Article  PubMed  CAS  Google Scholar 

  17. Palmer AE, Tsien RY (2006) Measuring calcium signalling using genetically targetable fluorescent indicators. Nat Protoc 1(3):1057–1065

    Article  PubMed  CAS  Google Scholar 

  18. Knopfel T, Diez-Garcia J, Akemann W (2006) Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 29:160–166

    Article  PubMed  Google Scholar 

  19. Kotlikoff MI (2007) Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J Physiol 578:55–67

    Article  PubMed  CAS  Google Scholar 

  20. McCombs JE, Palmer AE (2008) Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46(3):152–159

    Article  PubMed  CAS  Google Scholar 

  21. Jiang M, Deng L, Chen G (2004) High Ca2+-phosphate transfection efficiency enables single neuron gene analysis. Gene Ther 11(17):1303–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williams, D.A., Monif, M., Richardson, K.L. (2013). Compartmentalizing Genetically Encoded Calcium Sensors. In: Lambert, D., Rainbow, R. (eds) Calcium Signaling Protocols. Methods in Molecular Biology, vol 937. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-086-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-086-1_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-085-4

  • Online ISBN: 978-1-62703-086-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics