Skip to main content

Current Epigenetic Therapy for T-Cell Lymphoma

  • Chapter
  • First Online:
Book cover T-Cell Lymphomas

Abstract

Cutaneous T-cell lymphoma (CTCL) is challenging to treat. Patients with advanced disease typically only enjoy brief responses to conventional chemotherapeutics, and are at particularly high risk of infectious complications during the treatment with chemotherapy. Combination and intensification of conventional chemotherapeutics fails to cure the vast majority of patients with CTCL or other forms of peripheral T-cell lymphoma (PTCL). In this context, biological agents, and in particular the histone deacetylase inhibitors (HDACis), present an attractive alternative because they lack many of the side effects of conventional chemotherapy and appear to overcome chemotherapy resistance.

The HDACis target not only the epigenome but also numerous nucleic and cytoplasmic non-histone proteins and are powerful and selective inducers of cancer cell apoptosis and modifiers of the tumour microenvironment. To date, the best data for their use comes from trials in the lymphoid malignancies and CTCL is the only condition for which HDACis are currently registered. The FDA has approved romidepsin and vorinostat for use in relapsed/refractory CTCL and these agents provide patients with a new opportunity for durable clinical response. Similarly, romidepsin has potent activity in nodal PTCLs, with emerging data supporting a future role in clinical practice, either alone or in combination with conventional therapies.

Here we discuss the concept of epigenetic modifying agents, briefly review the putative targets for the HDACis and discuss key clinical trials supporting their use in T-cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

    Article  PubMed  CAS  Google Scholar 

  2. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev. 2006;5:769–84.

    Article  CAS  Google Scholar 

  3. Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108:475–87.

    Article  PubMed  CAS  Google Scholar 

  4. Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009;27:5459–68.

    Article  PubMed  CAS  Google Scholar 

  5. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev. 2002;1:287–99.

    Article  CAS  Google Scholar 

  6. Dickinson M, Johnstone RW, Prince HM. Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs. 2010;28 Suppl 1:S3–20.

    Article  PubMed  Google Scholar 

  7. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.

    Article  PubMed  CAS  Google Scholar 

  8. Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2005;102:3697–702.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther. 2004;3:425–35.

    Article  PubMed  CAS  Google Scholar 

  10. Buglio D, Georgakis GV, Hanabuchi S, et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood. 2008;112:1424–33.

    Article  PubMed  CAS  Google Scholar 

  11. Fantin VR, Loboda A, Paweletz CP, et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res. 2008;68:3785–94.

    Article  PubMed  CAS  Google Scholar 

  12. Ruefli AA, Ausserlechner MJ, Bernhard D, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001;98:10833–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 2004;23:6261–71.

    Article  PubMed  CAS  Google Scholar 

  14. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia. 2005;7:646–57.

    Article  PubMed  CAS  Google Scholar 

  15. Inoue S, Harper N, Walewska R, Dyer MJS, Cohen GM. Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis. Mol Cancer Ther. 2009;8:3088–97.

    Article  PubMed  CAS  Google Scholar 

  16. Klener P, Molinsky J, Simonova T, Necas E, Andera L, Zivny J. Acquired resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): histone deacetylase inhibitors resensitize TRAIL-resistant jurkat acute lymphocytic leukemia cells. ASH Annual Meeting Abstracts. 2008;112:5032 EP.

    Google Scholar 

  17. Frew AJ, Lindemann RK, Martin BP, et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci USA. 2008;105:11317–22.

    Article  PubMed  CAS  Google Scholar 

  18. Vrana JA, Decker RH, Johnson CR, et al. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene. 1999;18:7016–25.

    Article  PubMed  CAS  Google Scholar 

  19. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 2003;4:13–8.

    Article  PubMed  CAS  Google Scholar 

  20. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92:1210–6.

    Article  PubMed  CAS  Google Scholar 

  21. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9.

    Article  PubMed  CAS  Google Scholar 

  22. Ungerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2005;102:673–8.

    Article  PubMed  CAS  Google Scholar 

  23. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63:3637–45.

    PubMed  CAS  Google Scholar 

  24. Rosato RR, Kolla SS, Hock SK, et al. Histone deacetylase inhibitors activate NF-kappaB in human leukemia cells through an ATM/NEMO-related pathway. J Biol Chem. 2010;285:10064–77.

    Article  PubMed  CAS  Google Scholar 

  25. Piekarz RL, Sackett DL, Bates SE. Histone deacetylase inhibitors and demethylating agents: clinical development of histone deacetylase inhibitors for cancer therapy. Cancer J. 2007;13:30–9.

    Article  PubMed  CAS  Google Scholar 

  26. Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41:185–98.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez-Gonzalez A, Lin T, Ikeda AK, Simms-Waldrip T, Fu C, Sakamoto KM. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation. Cancer Res. 2008;68:2557–60.

    Article  PubMed  CAS  Google Scholar 

  28. Davenport EL, Morgan GJ, Davies FE. Untangling the unfolded protein response. Cell Cycle. 2008;7:865–9.

    Article  PubMed  CAS  Google Scholar 

  29. Todd DJ, Lee A-H, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008;8:663–74.

    Article  PubMed  CAS  Google Scholar 

  30. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003;115:727–38.

    Article  PubMed  CAS  Google Scholar 

  31. Buglio D, Mamidipudi V, Khaskhely NM, et al. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism. Br J Haematol. 2010;151(4):387–96.

    Article  PubMed  CAS  Google Scholar 

  32. Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene. 2007;26:5468–76.

    Article  PubMed  CAS  Google Scholar 

  33. Harrison SJ, Quach H, Link E, et al. A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood. 2011;118:6274–83.

    Article  PubMed  CAS  Google Scholar 

  34. Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7.

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 2005;114:301–12.

    Article  PubMed  CAS  Google Scholar 

  36. Brender C, Nielsen M, Kaltoft K, et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001;97:1056–62.

    Article  PubMed  CAS  Google Scholar 

  37. Eriksen KW, Kaltoft K, Mikkelsen G, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15:787–93.

    Article  PubMed  CAS  Google Scholar 

  38. Nielsen M, Kaltoft K, Nordahl M, et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA. 1997;94:6764–9.

    Article  PubMed  CAS  Google Scholar 

  39. Nielsen M, Nissen MH, Gerwien J, et al. Spontaneous interleukin-5 production in cutaneous T-cell lymphoma lines is mediated by constitutively activated Stat3. Blood. 2002;99:973–7.

    Article  PubMed  CAS  Google Scholar 

  40. Wozniak MB, Villuendas R, Bischoff JR, et al. Vorinostat interferes with the signaling transduction pathway of T cell receptor and synergizes with PI3K inhibitors in cutaneous T-cell lymphoma. Haematologica. 2010;95:613–21.

    Article  PubMed  CAS  Google Scholar 

  41. Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  PubMed  CAS  Google Scholar 

  42. Shao W, Growney JD, Feng Y, et al. Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: Defining molecular mechanisms of resistance. Int J Cancer. 2010;127:2199–208.

    Article  PubMed  CAS  Google Scholar 

  43. Tiffon C, Adams J, van der Fits L, et al. The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br J Pharmacol. 2011;162:1590–602.

    Article  PubMed  CAS  Google Scholar 

  44. Ellis L, Pan Y, Smyth GK, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res. 2008;14:4500–10.

    Article  PubMed  CAS  Google Scholar 

  45. Fotheringham S, Epping MT, Stimson L, et al. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell. 2009;15:57–66.

    Article  PubMed  CAS  Google Scholar 

  46. Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001;98:2865–8.

    Article  PubMed  CAS  Google Scholar 

  47. Olsen EA, Whittaker S, Kim YH, et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2011;29:2598–607.

    Article  PubMed  Google Scholar 

  48. Stevens SR, Ke MS, Parry EJ, Mark J, Cooper KD. Quantifying skin disease burden in mycosis fungoides-type cutaneous T-cell lymphomas: the severity-weighted assessment tool (SWAT). Arch Dermatol. 2002;138:42–8.

    Article  PubMed  Google Scholar 

  49. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52.

    Article  PubMed  CAS  Google Scholar 

  50. Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25:3109–15.

    Article  PubMed  CAS  Google Scholar 

  51. Piekarz R, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27(32):5410–7.

    Article  PubMed  CAS  Google Scholar 

  52. Whittaker SJ, Demierre M-F, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28(29):4485–91.

    Article  PubMed  CAS  Google Scholar 

  53. Duvic M, Dummer R, Becker J, et al. Panobinostat activity in both bexarotene-exposed and -naïve patients with refractory cutaneous T-cell lymphoma: results of a phase II trial. Eur J Haematol. 2011 [Epub ahead of print].

    Google Scholar 

  54. Piekarz RL, Frye R, Prince HM, et al. Phase II trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117(22):5827–34.

    Article  PubMed  CAS  Google Scholar 

  55. Coiffier B, Pro B, Prince HM, et al. Final results from a pivotal, multicenter, international, open-label, phase 2 study of romidepsin in progressive or relapsed peripheral T-cell lymphoma (PTCL) following prior systemic therapy. ASH Annual Meeting Abstracts. 2010;116:114.

    Google Scholar 

  56. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244.

    PubMed  CAS  Google Scholar 

  57. Lin R, Hu J, Paul S, et al. Characteristics of thrombocytopenia in patients treated with oral panobinostat (LBH589). ASH Annual Meeting Abstracts. 2009;114:2740 EP.

    Google Scholar 

  58. Bishton MJ, Harrison SJ, Martin BP, et al. Deciphering the molecular and biological processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood. 2011;117(13):3658–68.

    Article  PubMed  CAS  Google Scholar 

  59. Cabell C, Bates S, Piekarz R, et al. Systematic assessment of potential cardiac effects of the novel histone deacetylase (HDAC) inhibitor romidepsin. ASCO Meeting Abstracts. 2009;27:e19533 EP.

    Google Scholar 

  60. Piekarz RL, Frye AR, Wright JJ, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12:3762–73.

    Article  PubMed  CAS  Google Scholar 

  61. Weber H, Tai F, Paul S, et al. QT interval measurements in patients with hematologic malignancies and solid tumors treated with oral panobinostat (LBH589). ASH Annual Meeting Abstracts. 2009;114:3781 EP.

    Google Scholar 

  62. Munster PN, Rubin EH, Van Belle S, et al. A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res. 2009;15:7077–84.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang L, Lebwohl D, Masson E, Laird G, Cooper MR, Prince HM. Clinically relevant QTc prolongation is not associated with current dose schedules of LBH589 (panobinostat). J Clin Oncol. 2008;26:332–3. discussion 3–4.

    Article  PubMed  CAS  Google Scholar 

  64. Morgan M, Maloney D, Duvic M. Hypomagnesemia and hypocalcemia in mycosis fungoides: a retrospective case series. Leuk Lymphoma. 2002;43:1297–302.

    PubMed  Google Scholar 

  65. Prince HM, Whittaker S, Hoppe RT. How I treat mycosis fungoides and Sézary syndrome. Blood. 2009;114:4337–53.

    Article  PubMed  CAS  Google Scholar 

  66. Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res. 2009;15:3970–7.

    Article  PubMed  CAS  Google Scholar 

  67. Sharma SV, Lee DY, Li B, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  PubMed  CAS  Google Scholar 

  68. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8.

    Article  PubMed  CAS  Google Scholar 

  69. Guardiola AR, Yao T-P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem. 2002;277:3350–6.

    Article  PubMed  CAS  Google Scholar 

  70. Wang Z, Zang C, Cui K, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138(5):1019–31.

    Article  PubMed  CAS  Google Scholar 

  71. Fujiwara Y, Yamamoto N, Yamada Y, et al. Phase I and pharmacokinetic study of vorinostat (suberoylanilide hydroxamic acid) in Japanese patients with solid tumors. Cancer Sci. 2009;100:1728–34.

    Article  PubMed  CAS  Google Scholar 

  72. Kelly WK, Richon VM, O’Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003;9:3578–88.

    PubMed  CAS  Google Scholar 

  73. O’Connor OA. Clinical experience with the novel histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in patients with relapsed lymphoma. Br J Cancer. 2006;95:S7–12.

    Article  Google Scholar 

  74. Piekarz RL, Frye R, Prince HM, et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117:5827–34.

    Article  PubMed  CAS  Google Scholar 

  75. Woo S, Gardner ER, Chen X, et al. Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin Cancer Res. 2009;15:1496–503.

    Article  PubMed  CAS  Google Scholar 

  76. Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19:2456–71.

    PubMed  CAS  Google Scholar 

  77. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  78. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dickinson M.B.B.S. (Hons), F.R.A.C.P., F.R.C.P.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dickinson, M., Cheah, C., Prince, H.M. (2013). Current Epigenetic Therapy for T-Cell Lymphoma. In: Foss, F. (eds) T-Cell Lymphomas. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-170-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-170-7_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-169-1

  • Online ISBN: 978-1-62703-170-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics