We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Molecular Strategies to Improve Rice Disease Resistance | SpringerLink
Skip to main content

Molecular Strategies to Improve Rice Disease Resistance

  • Protocol
  • First Online:
Rice Protocols

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Rice diseases such as blast (Magnaporthe oryzae), sheath blight (Rhizoctonia solani) and bacterial blight (Xanthomonas oryzae pv oryzae) are a major obstacle to achieving optimal yields. To complement conventional breeding method, molecular and transgenic method represents an increasingly important approach for genetic improvement of disease resistance and reduction of pesticide usage. During the past two decades, a wide variety of genes and mechanisms involved in rice defense response have been identified and elucidated. These include components of pathogen recognition, signal transduction, downstream defense-related proteins, and crosstalk among different signaling pathways. In addition, various molecular strategies including use of specialized promoters, modification of target protein structures have been studied and proposed to improve the effectiveness of transgenes. While genetically improving rice for enhanced disease resistance, it is important to consider potential effects of the transgene on rice yield, tolerance to abiotic stresses, and defense against other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from blast disease. Trends Biotechnol 27:141–150

    Article  PubMed  CAS  Google Scholar 

  2. Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev 7:185–195

    Article  CAS  Google Scholar 

  3. Banniza S, Holderness M (2001) Pathogen biology and diversity. In: Sreenivasaprasad S, Johnson R (eds) Major fungal diseases of rice: recent advances. Kluwer Academic Publishers, The Netherlands. pp 201–211

    Google Scholar 

  4. Ou SH (1972) Rice diseases. Commonwealth Mycological Institute, Kew, Surrey, England

    Google Scholar 

  5. Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogen of a model crop. Mol Plant Pathol 7:303–324

    Article  PubMed  Google Scholar 

  6. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  7. Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    Article  PubMed  CAS  Google Scholar 

  8. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  PubMed  CAS  Google Scholar 

  9. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  10. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G-L (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  PubMed  CAS  Google Scholar 

  11. Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182:817–828

    Article  PubMed  Google Scholar 

  12. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2008) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  PubMed  CAS  Google Scholar 

  13. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  14. Gomez-Gomez L, Boller T (2006) FLS2: an LRR receptor like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  Google Scholar 

  15. Göhre V, Spallek T, Haweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzke S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Zhou SY, Zhao WS, Su SC, Peng YL (2009) A novel wall-associated receptor-like kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69:337–346

    Article  PubMed  CAS  Google Scholar 

  17. Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and Rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  18. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  19. Carole LB, Michael LN, Reuben AC, Mangalathu SR (2000) Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory (Ipomoea nil). Plant Mol Biol 43:43–58

    Article  Google Scholar 

  20. Nishiguchi M, Yoshida K, Sumizono T, Tazaki K (2002) A receptor-like protein kinase with a lectin-like domain from lombardy poplar: gene expression in response to wounding and characterization of phosphorylation activity. Mol Genet Genomics 267:506–514

    Article  PubMed  CAS  Google Scholar 

  21. Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113:1203–1212

    Article  PubMed  CAS  Google Scholar 

  22. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  23. Xiong L, Lee MW, Qi M, Yang Y (2001) Identification of defense-related genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact 14:685–692

    Article  PubMed  CAS  Google Scholar 

  24. Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117

    Article  PubMed  CAS  Google Scholar 

  25. Song D, Li G, Song F, Zheng Z (2008) Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep 35:275–283

    Article  PubMed  CAS  Google Scholar 

  26. Peng H, Zhang Z, Li Y, Lei C, Zhai Y, Sun X, Sun D, Sun Y, Lu T (2009) A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta 230:377–385

    Article  PubMed  CAS  Google Scholar 

  27. Song WY, Wang G-L, Chen LL, Kim HS, Pi LY, Holsten T, Wang B, Zhai WX, Zhu H, Fauquet C, Ronald PC (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  28. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2009) A type-I secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    Article  PubMed  CAS  Google Scholar 

  29. Wang G-L, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple X. oryzae pv. oryzae isolates in transgenic plants. Mol. Plant-Microbe Interct 9:850–855

    Article  CAS  Google Scholar 

  30. Ito Y, Kaku H, Shibuya N (2002) Identification of a high affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J 12:347–356

    Article  Google Scholar 

  31. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  PubMed  CAS  Google Scholar 

  32. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  PubMed  CAS  Google Scholar 

  33. Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  PubMed  CAS  Google Scholar 

  34. Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang G-L (2010) Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427

    Article  PubMed  CAS  Google Scholar 

  35. Delteil A, Zhang J, Lessard P, Morel JB (2010) Potential candidate genes for improving rice disease resistance. Rice 3:56–71

    Article  Google Scholar 

  36. Zhao J, Fu J, Li X, Xu C, Wang S (2009) Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor Appl Genet 119:231–239

    Article  PubMed  Google Scholar 

  37. Century KS, Lagman RA, Adkisson M, Morlan J, Tobias R, Schwartz K, Smith A, Love J, Ronald PC, Whalen MC (1999) Developmental control of Xa21- mediated disease resistance in rice. Plant J 20:231–236

    Article  PubMed  CAS  Google Scholar 

  38. Cao Y, Ding X, Cai M, Zhao J, In Y, Li X, Xu C, Wang S (2007) Expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523–533

    Article  PubMed  CAS  Google Scholar 

  39. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    Article  PubMed  CAS  Google Scholar 

  40. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  41. Koide Y, Kawasaki A, Telebanco-Yanoria MJ, Hairmansis A, Nguyen NTM, Bigirimana J, Fujita D, Kobayashi N, Fukuta Y (2010) Development of pyramided lines with two resistance genes, Pish and Pib, for blast disease (Magnaporthe oryzae B.Couch) in rice (Oryza sativa L.). Plant Breed 129:670–675

    Article  CAS  Google Scholar 

  42. Farnham G, Baulcombe DC (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc Natl Acad Sci USA 103:18828–18833

    Article  PubMed  CAS  Google Scholar 

  43. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:422–426

    Article  CAS  Google Scholar 

  44. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  45. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  PubMed  CAS  Google Scholar 

  46. Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwamo M, Satoh H, Shimamoto K (1999) The small GTP-binding protein Rac is a regulator of cell death in plants. Plant Cell 14:763–776

    Google Scholar 

  47. Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K (2001) Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 98:759–764

    Article  PubMed  CAS  Google Scholar 

  48. Godfrey D, Able A, Dry I (2007) Induction of a grapevine germin-like protein (HvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe Interact 20:1112–1125

    Article  PubMed  CAS  Google Scholar 

  49. Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    Article  PubMed  CAS  Google Scholar 

  50. Rohila JS, Yang Y (2007) Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol 49:751–759

    Article  CAS  Google Scholar 

  51. Reyna NS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540

    Article  PubMed  CAS  Google Scholar 

  52. Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K (2005) A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol 138:1644–1652

    Article  PubMed  CAS  Google Scholar 

  53. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  54. He C, Fong SH, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064–1073

    Article  PubMed  CAS  Google Scholar 

  55. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  PubMed  CAS  Google Scholar 

  56. Vleesschauwer D, Yang Y, Vera Cruz C, Höfte M (2010) Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol 152:2036–2052

    Article  PubMed  CAS  Google Scholar 

  57. Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226:953–960

    Article  PubMed  CAS  Google Scholar 

  58. Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612

    Article  PubMed  CAS  Google Scholar 

  59. Silverman P, Seskar M, Kanter D, Schweizer P, Métraux J-P, Raskin I (1995) Salicylic acid in rice: biosynthesis, conjugation, and possible role. Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  60. Yang Y, Qi M, Mei C (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  61. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  PubMed  CAS  Google Scholar 

  62. Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    Article  PubMed  CAS  Google Scholar 

  63. Chern MS, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact 18:511–526

    Article  PubMed  CAS  Google Scholar 

  64. Jiang C-J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takasuji H (2009) Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact 22:820–829

    Article  PubMed  CAS  Google Scholar 

  65. Iwai T, Seo S, Mitsuhara I, Ohashi Y (2007) Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol 48:915–924

    Article  PubMed  CAS  Google Scholar 

  66. Umemura K, Satou J, Iwata M, Uozumi N, Koga J, Kawano T, Koshiba T, Anzai H, Mitomi M (2009) Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant J 57:463–472

    Article  PubMed  CAS  Google Scholar 

  67. Seo S, Ishizuka K, Ohashi Y (1995) Induction of salicylic acid β-glucosidase in tobacco leaves by exogenous salicylic acid. Plant Cell Physiol 36:447–453

    CAS  Google Scholar 

  68. Chen Z, Malamy J, Henning J, Conrath U, Sanchez-Casas P, Silva H, Ricigliano J, Klessig K (1995) Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci USA 92:4134–4137

    Article  PubMed  CAS  Google Scholar 

  69. He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  PubMed  CAS  Google Scholar 

  70. Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett 412:61–64

    Article  PubMed  CAS  Google Scholar 

  71. Schweizer P, Buchala A, Métraux J-P (1997) Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2, 6-dichloroisonicotinic acid. Plant Physiol 115:61–70

    PubMed  CAS  Google Scholar 

  72. Mei C, Min Q, Sheng G, Yang Y (2006) Inducible overexpression of a rice allele oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    Article  PubMed  CAS  Google Scholar 

  73. Singh MP, Lee FN, Counce PA, Gibbons JH (2004) Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology 94:819–825

    Article  PubMed  CAS  Google Scholar 

  74. Iwai T, Miyasaka A, Seo S, Ohashi Y (2006) Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol 142:1202–1215

    Article  PubMed  CAS  Google Scholar 

  75. Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2010) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155:502–514

    Article  PubMed  CAS  Google Scholar 

  76. Bailey TA, Zhou X, Chen J, Yang Y (2009) Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang G-L, Valent B (eds) Advances in genetics, genomics and control of rice blast disease. Springer pp 185–190

    Google Scholar 

  77. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  78. Jiang C-J, Shimono M, Sugano S, Kojima M, Azawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    Article  PubMed  CAS  Google Scholar 

  79. Kazan K, Manners JM (2009) Linking development to defense: auxin in plant- pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  80. Shinshu H, Mohnen D, Meins F (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 84:89–93

    Article  Google Scholar 

  81. Abreu ME, Munne-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  PubMed  CAS  Google Scholar 

  82. Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2009) Activation of the indole-3-acetic acid-amido synthetase GH3. 8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Google Scholar 

  83. Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol Plant Microbe Interact 22:201–210

    Article  PubMed  CAS  Google Scholar 

  84. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969–979

    Article  PubMed  CAS  Google Scholar 

  85. Hu K, Qiu D, Shen X, Li X, Wang S (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant Pathol 1:786–793

    CAS  Google Scholar 

  86. Wen N, Chu Z, Wang S (2003) Three types of defense-responsive genes are involved in resistance to bacterial blight and fungal blast diseases in rice. Mol Genet Genomics 269:331–339

    Article  PubMed  CAS  Google Scholar 

  87. Wang GL, Mackill DJ, Bonman M, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    PubMed  CAS  Google Scholar 

  88. Chen H, Wang S, Xing Y, Xu C, Hayes P, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100:2544–2549

    Article  PubMed  CAS  Google Scholar 

  89. Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense related genes in salicylate and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    Article  PubMed  CAS  Google Scholar 

  90. Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S et al (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    Article  PubMed  CAS  Google Scholar 

  91. Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139

    Article  PubMed  CAS  Google Scholar 

  92. Nakashima K, Tran L-SP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  93. Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  94. Fitzgerald HA, Canlas PE, Chern MS, Ronald PC (2005) Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J 43:335–347

    Article  PubMed  CAS  Google Scholar 

  95. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:1–28

    Article  CAS  Google Scholar 

  96. Datta K, Baisakh N, Maung T, Thet KM, Tu J, Datta S (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    PubMed  CAS  Google Scholar 

  97. Anžlovar S, Dermastia M (2003) The comparative analysis of osmotins and osmotin-like PR-5 proteins. Plant Biol 5:116–124

    Article  Google Scholar 

  98. Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    Article  CAS  Google Scholar 

  99. Gomez-Ariza J, Campo S, Rufat M, Estopa M, Messeguer J, Segundo BS, Coca M (2007) Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance of the maize pathogenesis-related PRms protein in rice plants. Mol Plant Microbe Interact 20:832–842

    Article  PubMed  CAS  Google Scholar 

  100. Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018

    Article  PubMed  CAS  Google Scholar 

  101. Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284:26510–26518

    Article  PubMed  CAS  Google Scholar 

  102. Eckhardt NA (2002) Plant disease susceptibility genes? Plant Cell 14:1983–1986

    Article  Google Scholar 

  103. Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  104. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17:1348–1354

    Article  PubMed  CAS  Google Scholar 

  105. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20:1250–1255

    Article  PubMed  CAS  Google Scholar 

  106. Iyer-Pascuzzi AS, McCouch SR (2007) Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv oryzae pathosystem. Mol Plant Microbe Interact 20:731–739

    Article  PubMed  CAS  Google Scholar 

  107. Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190

    Article  CAS  Google Scholar 

  108. Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:1–6

    Article  Google Scholar 

  109. Kim EH, Kim YS, Park S-H, Koo YJ, Choi YD, Chung Y-Y, Lee I-J, Kim J-K (2009) Methyl jasmonate reduces grain yield by mediating signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  PubMed  CAS  Google Scholar 

  110. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol 40:1–22

    Article  CAS  Google Scholar 

  111. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed  CAS  Google Scholar 

  112. Joo S, Liu Y, Lueth A, Zhang S (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54:129–140

    Article  PubMed  CAS  Google Scholar 

  113. Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim H-S, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine- rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  114. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963

    Article  PubMed  CAS  Google Scholar 

  115. Jia Y, Martin R (2008) Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Mol Plant Microbe Interact 21:396–403

    Article  PubMed  CAS  Google Scholar 

  116. Lee S-K, Song M-Y, Seo Y-S, Kim H-K, Ko S, Cao P-J, Suh J-P, Yi G, Roh J-H, Lee S, An G, Hahn T-R, Wang G-L, Ronald P, Jeon J-S (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich-repeat genes. Genetics 181:1627–1638

    Article  PubMed  CAS  Google Scholar 

  117. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grants from USDA/NRI (2008-35301-19028) and NSF Plant Genome Research Program (DBI-0605017 and DBI-0922747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Helliwell, E.E., Yang, Y. (2013). Molecular Strategies to Improve Rice Disease Resistance. In: Yang, Y. (eds) Rice Protocols. Methods in Molecular Biology, vol 956. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-194-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-194-3_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-193-6

  • Online ISBN: 978-1-62703-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics