Skip to main content

Heavy Methyl-SILAC Labeling Coupled with Liquid Chromatography and High-Resolution Mass Spectrometry to Study the Dynamics of Site-Specific Histone Methylation

  • Protocol
  • First Online:
Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 977))

Abstract

Histone lysine and arginine methylation involved in gene activation and silencing is dynamically regulated. However, partly limited to the research technologies previously available, the dynamics of global histone methylation on a site-specific basis have not been fully pursued. Heavy methyl-SILAC (Stable Isotope Labeling of Amino Acids in Cell Culture) labeling provides a remarkable signpost to distinguish the preexisting and newly generated methyl marks on histones. Using this technology coupled with quantitative LC-MS analysis make it possible to monitor changes in the dynamics of histone site-specific methylation. In this chapter, we comprehensively describe the experimental strategy to determine the dynamics of multiple histone methylated residues including SILAC labeling, histone extraction/purification and mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  2. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  3. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  4. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    Article  PubMed  CAS  Google Scholar 

  5. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    Article  PubMed  CAS  Google Scholar 

  6. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99:8695–8700

    Article  PubMed  CAS  Google Scholar 

  8. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316

    Article  PubMed  CAS  Google Scholar 

  9. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839

    Article  PubMed  CAS  Google Scholar 

  10. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13:3822–3831

    PubMed  CAS  Google Scholar 

  11. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043

    Article  PubMed  CAS  Google Scholar 

  12. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  13. Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Green RD, Kouzarides T (2009) Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2. Nat Struct Mol Biol 16:449–451

    Article  PubMed  CAS  Google Scholar 

  14. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  15. Thomas G, Lange HW, Hempel K (1975) Kinetics of histone methylation in vivo and its relation to the cell cycle in Ehrlich ascites tumor cells. Eur J Biochem 51:609–615

    Article  PubMed  CAS  Google Scholar 

  16. Pesavento JJ, Yang H, Kelleher NL, Mizzen CA (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28:468–486

    Article  PubMed  CAS  Google Scholar 

  17. McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ (2006) Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem 281:8888–8897

    Article  PubMed  CAS  Google Scholar 

  18. Waterborg JH (1993) Dynamic methylation of alfalfa histone H3. J Biol Chem 268:4918–4921

    PubMed  CAS  Google Scholar 

  19. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285:3341–3350

    Article  PubMed  CAS  Google Scholar 

  20. Plazas-Mayorca MD, Zee BM, Young NL, Fingerman IM, LeRoy G, Briggs SD, Garcia BA (2009) One-pot shotgun quantitative mass spectrometry characterization of histones. J Proteome Res 8:5367–5374

    Article  PubMed  CAS  Google Scholar 

  21. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22:1459–1466

    Article  PubMed  CAS  Google Scholar 

  22. Murray K (1966) The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol 15:409–419

    Article  PubMed  CAS  Google Scholar 

  23. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457

    Article  PubMed  CAS  Google Scholar 

  24. Garcia BA, Mollah S, Ueberheide BM, Busby SA, Muratore TL, Shabanowitz J, Hunt DF (2007) Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc 2:933–938

    Article  PubMed  CAS  Google Scholar 

  25. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

B.A.G. gratefully acknowledges funding from a National Science Foundation grant (CBET-0941143), an Agilent Thought Leader award, an NSF Early Faculty CAREER award, and an NIH Innovator award (DP2OD007447) from the Office Of The Director, NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cao, XJ., Zee, B.M., Garcia, B.A. (2013). Heavy Methyl-SILAC Labeling Coupled with Liquid Chromatography and High-Resolution Mass Spectrometry to Study the Dynamics of Site-Specific Histone Methylation. In: Bina, M. (eds) Gene Regulation. Methods in Molecular Biology, vol 977. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-284-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-284-1_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-283-4

  • Online ISBN: 978-1-62703-284-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics