Skip to main content

Multisystemic Functions of Alkaline Phosphatases

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl −/− mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5′-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification.

The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 −/−) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid translocase thought to play a role in facilitating the transport of long-chain fatty acids into cells. gIAP, but not dIAP, is able to modulate the phosphorylation status of FAT/CD36. dIAP, even though it is expressed in the duodenum, is shed into the gut lumen and is active in LPS dephosphorylation throughout the gut lumen and in the feces. Akp3 −/− mice display gut dysbiosis and are more prone to dextran sodium sulfate-induced colitis than wild-type mice. Of relevance, oral administration of recombinant calf IAP prevents the dysbiosis and protects the gut from chronic colitis. Analogous to the role of IAP in the gut, TNAP expression in the liver may have a proactive role from bacterial endotoxin insult. Finally, more recent studies suggest that neuronal death in Alzheimer’s disease may also be associated with TNAP function on certain brain-specific phosphoproteins. This review recounts the established roles of TNAP and IAP and briefly discusses new areas of investigation related to multisystemic functions of these isozymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Millan JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Weiss MJ, Ray K, Henthorn PS et al (1988) Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem 263:12002–12010

    PubMed  CAS  Google Scholar 

  3. Kishi F, Matsuura S, Kajii T (1989) Nucleotide sequence of the human liver-type alkaline phosphatase cDNA. Nucleic Acids Res 17:2129

    Article  PubMed  CAS  Google Scholar 

  4. Matsuura S, Kishi F, Kajii T (1990) Characterization of a 5′-flanking region of the human liver/bone/kidney alkaline phosphatase gene: two kinds of mRNA from a single gene. Biochem Biophys Res Commun 168:993–1000

    Article  PubMed  CAS  Google Scholar 

  5. Studer M, Terao M, Gianni M et al (1991) Characterization of a second promoter for the mouse liver/bone/kidney-type alkaline phosphatase gene: cell and tissue specific expression. Biochem Biophys Res Commun 179:1352–1360

    Article  PubMed  CAS  Google Scholar 

  6. Martin D, Tucker DF, Gorman P et al (1987) The human placental alkaline phosphatase gene and related sequences map to chromosome 2 band q37. Ann Hum Genet 51:145–152

    Article  PubMed  CAS  Google Scholar 

  7. Griffin CA, Smith M, Henthorn PS et al (1987) Human placental and intestinal alkaline phosphatase genes map to 2q34-q37. Am J Hum Genet 41:1025–1034

    PubMed  CAS  Google Scholar 

  8. Henthorn PS, Raducha M, Edwards YH et al (1987) Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A 84:1234–1238

    Article  PubMed  CAS  Google Scholar 

  9. Knoll BJ, Rothblum KN, Longley M (1988) Nucleotide sequence of the human placental alkaline phosphatase gene. Evolution of the 5′ flanking region by deletion/substitution. J Biol Chem 263:12020–12027

    PubMed  CAS  Google Scholar 

  10. Millán JL, Manes T (1988) Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A 85:3024–3028

    Article  PubMed  Google Scholar 

  11. Ovitt CE, Strauss AW, Alpers DH et al (1986) Expression of different-sized placental alkaline phosphatase mRNAs in placenta and choriocarcinoma cells. Proc Natl Acad Sci U S A 83:3781–3785

    Article  PubMed  CAS  Google Scholar 

  12. Gum JR, Kam WK, Byrd JC et al (1987) Effects of sodium butyrate on human colonic adenocarcinoma cells. Induction of placental-like alkaline phosphatase. J Biol Chem 262:1092–1097

    PubMed  CAS  Google Scholar 

  13. Chou JY, Takahashi S (1987) Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate. Biochemistry 26:3596–3602

    Article  PubMed  CAS  Google Scholar 

  14. Terao M, Pravtcheva D, Ruddle FH et al (1988) Mapping of gene encoding mouse placental alkaline phosphatase to chromosome 4. Somat Cell Mol Genet 14:211–215

    Article  PubMed  CAS  Google Scholar 

  15. Manes T, Glade K, Ziomek CA et al (1990) Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes. Genomics 8:541–554

    Article  PubMed  CAS  Google Scholar 

  16. Narisawa S, Hoylaerts MF, Doctor KS et al (2007) A novel phosphatase upregulated in Akp3 knockout mice. Am J Physiol Gastrointest Liver Physiol 293:G1068–G1077

    Article  CAS  PubMed  Google Scholar 

  17. Merchant-Larios H, Mendlovic F, Alvarez-Buylla A (1985) Characterization of alkaline phosphatase from primordial germ cells and ontogenesis of this enzyme in the mouse. Differentiation 29:145–151

    Article  PubMed  CAS  Google Scholar 

  18. MacGregor GR, Zambrowicz BP, Soriano P (1995) Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121:1487–1496

    PubMed  CAS  Google Scholar 

  19. Narisawa S, Hasegawa H, Watanabe K et al (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235

    Article  PubMed  CAS  Google Scholar 

  20. Hoshi K, Amizuka N, Oda K et al (1997) Immunolocalization of tissue non-specific alkaline phosphatase in mice. Histochem Cell Biol 107:183–191

    Article  PubMed  CAS  Google Scholar 

  21. Fonta C, Négyessy L, Renaud L et al (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    Article  PubMed  Google Scholar 

  22. Langer D, Hammer K, Koszalka P et al (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    Article  PubMed  CAS  Google Scholar 

  23. Brun-Heath I, Ermonval M, Chabrol E et al (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536

    Google Scholar 

  24. Négyessy L, Xiao J, Kántor O et al (2011) Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience 172:406–418

    Article  PubMed  CAS  Google Scholar 

  25. Hahnel AC, Rappolee DA, Millan JL et al (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110:555–564

    PubMed  CAS  Google Scholar 

  26. Hustin J, Collette J, Franchimont P (1987) Immunohistochemical demonstration of placental alkaline phosphatase in various states of testicular development and in germ cell tumours. Int J Androl 10:29–35

    Article  PubMed  CAS  Google Scholar 

  27. Chang CH, Angellis D, Fishman WH (1980) Presence of the rare D-variant heat-stable, placental-type alkaline phosphatase in normal human testis. Cancer Res 40:1506–1510

    PubMed  CAS  Google Scholar 

  28. Goldstein DJ, Rogers C, Harris H (1982) A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: demonstration of its occurrence in lung, cervix, testis and thymus. Clin Chim Acta 125:63–75

    Article  PubMed  CAS  Google Scholar 

  29. Fishman L, Miyayama H, Driscoll SG et al (1976) Developmental phase-specific alkaline phosphatase isoenzymes of human placenta and their occurrence in human cancer. Cancer Res 36:2268–2273

    PubMed  CAS  Google Scholar 

  30. Jemmerson R, Klier FG, Fishman WH (1985) Clustered distribution of human placental alkaline phosphatase on the surface of both placental and cancer cells. Electron microscopic observations using gold-labeled antibodies. J Histochem Cytochem 33:1227–1234

    Article  PubMed  CAS  Google Scholar 

  31. Kozlenkov A, Manes T, Hoylaerts MF et al (2002) Function assignment to conserved residues in mammalian alkaline phosphatases. J Biol Chem 277:22992–22999

    Article  CAS  PubMed  Google Scholar 

  32. Kozlenkov A, Le Du MH, Cuniasse P et al (2004) Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J Bone Miner Res 19:1862–1872

    Article  PubMed  CAS  Google Scholar 

  33. Le Du MH, Millan JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277:49808–49814

    Article  PubMed  Google Scholar 

  34. Hoylaerts MF, Manes T, Millán JL (1997) Mammalian alkaline phosphatases are allosteric enzymes. J Biol Chem 272:22781–22787

    Article  PubMed  CAS  Google Scholar 

  35. Hoylaerts MF, Ding L, Narisawa S et al (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45:9756–9766

    Article  PubMed  CAS  Google Scholar 

  36. Bossi M, Hoylaerts MF, Millán JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268:25409–25416

    PubMed  CAS  Google Scholar 

  37. Halling LC, Narisawa S, Millán JL et al (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45:987–993

    Article  CAS  Google Scholar 

  38. Zhang L, Balcerzak M, Radisson J et al (2005) Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposition in isolated chicken matrix vesicles. J Biol Chem 280:37289–37296

    Article  PubMed  CAS  Google Scholar 

  39. Morris DC, Masuhara K, Takaoka K et al (1992) Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone. Bone Miner 19:287–298

    Article  PubMed  CAS  Google Scholar 

  40. Hawrylak K, Stinson RA (1988) The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylinositol phospholipase C or proteolysis. J Biol Chem 263:14368–14373

    PubMed  CAS  Google Scholar 

  41. Anh DJ, Eden A, Farley JR (2001) Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin Chim Acta 311:137–148

    Article  PubMed  CAS  Google Scholar 

  42. Low MG, Prasad AR (1988) A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc Natl Acad Sci U S A 85:980–984

    Article  PubMed  CAS  Google Scholar 

  43. Davitz MA, Hereld D, Shak S et al (1987) A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science 238:81–84

    Article  PubMed  CAS  Google Scholar 

  44. Magnusson P, Degerblad M, Sääf M et al (1997) Different responses of bone alkaline phosphatase isoforms during recombinant insulin-like growth factor-I (IGF-I) and during growth hormone therapy in adults with growth hormone deficiency. J Bone Miner Res 12:210–220

    Article  PubMed  CAS  Google Scholar 

  45. Smith GP, Peters TJ (1981) Subcellular localization and properties of pyridoxal phosphate phosphatases of human polymorphonuclear leukocytes and their relationship to acid and alkaline phosphatase. Biochim Biophys Acta 661:287–294

    Article  PubMed  CAS  Google Scholar 

  46. Wilson PD, Smith GP, Peters TJ (1983) Pyridoxal 5′-phosphate: a possible physiological substrate for alkaline phosphatase in human neutrophils. Histochem J 15:257–264

    Article  PubMed  CAS  Google Scholar 

  47. Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239:268–275

    Article  PubMed  CAS  Google Scholar 

  48. Waymire KG, Mahuren JD, Jaje JM et al (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    Article  PubMed  CAS  Google Scholar 

  49. Fleshood HL, Pitot HC (1970) The metabolism of O-phosphorylethanolamine in animal tissues. I. O-phosphorylethanolamine phospho-lyase: partial purification and characterization. J Biol Chem 245:4414–4420

    PubMed  CAS  Google Scholar 

  50. Lencel P, Delplace S, Pilet P et al (2011) Cell-specific effects of TNF-α and IL-1β on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification. Lab Invest 91:1434–1442

    Article  PubMed  CAS  Google Scholar 

  51. Krause U, Harris S, Green A et al (2010) Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci U S A 107:4147–4152

    Article  PubMed  CAS  Google Scholar 

  52. Briolay A, Lencel P, Bessueille L et al (2013) Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells. Biochem Biophys Res Commun 430:1072–1077

    Article  PubMed  CAS  Google Scholar 

  53. Delgado-Calle J, Sañudo C, Sánchez-Verde L et al (2011) Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 49:830–838

    Article  PubMed  CAS  Google Scholar 

  54. Bernard GW (1978) Ultrastructural localization of alkaline phosphatase in initial intramembranous osteogenesis. Clin Orthop Relat Res 218–225

    Google Scholar 

  55. Togari A, Arakawa S, Arai M et al (1993) Inhibition of in vitro mineralization in osteoblastic cells and in mouse tooth germ by phosphatidylinositol-specific phospholipase C. Biochem Pharmacol 46:1668–1670

    Article  PubMed  CAS  Google Scholar 

  56. Hsu HH, Morris DC, Davis L et al (1993) In vitro Ca deposition by rat matrix vesicles: is the membrane association of alkaline phosphatase essential for matrix vesicle-mediated calcium deposition? Int J Biochem 25:1737–1742

    Article  PubMed  CAS  Google Scholar 

  57. Sugawara Y, Suzuki K, Koshikawa M et al (2002) Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells. Jpn J Pharmacol 88:262–269

    Article  PubMed  CAS  Google Scholar 

  58. Whyte MP, Valdes R, Ryan LM et al (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr 101:379–386

    Article  PubMed  CAS  Google Scholar 

  59. Whyte MP, McAlister WH, Patton LS et al (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J Pediatr 105:926–933

    Article  PubMed  CAS  Google Scholar 

  60. Weninger M, Stinson RA, Plenk H et al (1989) Biochemical and morphological effects of human hepatic alkaline phosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand Suppl 360:154–160

    Article  PubMed  CAS  Google Scholar 

  61. Millán JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787

    Article  PubMed  Google Scholar 

  62. Whyte MP, Greenberg CR, Salman NJ et al (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913

    Article  PubMed  CAS  Google Scholar 

  63. Krawitz PM, Schweiger MR, Rödelsperger C et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829

    Article  PubMed  CAS  Google Scholar 

  64. Weiss MJ, Cole DE, Ray K et al (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669

    Article  PubMed  CAS  Google Scholar 

  65. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  PubMed  CAS  Google Scholar 

  66. Fallon MD, Teitelbaum SL, Weinstein RS et al (1984) Hypophosphatasia: clinicopathologic comparison of the infantile, childhood, and adult forms. Medicine (Baltimore) 63:12–24

    CAS  Google Scholar 

  67. Anderson HC, Hsu HH, Morris DC et al (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561

    PubMed  CAS  Google Scholar 

  68. Yadav MC, Simão AM, Narisawa S et al (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297

    Article  PubMed  CAS  Google Scholar 

  69. Millán JL (2012) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int (10.1007/s00223-012-9672-8)

    Google Scholar 

  70. Fedde KN, Blair L, Silverstein J et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  PubMed  CAS  Google Scholar 

  71. Zalatan JG, Fenn TD, Brunger AT et al (2006) Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Biochemistry 45:9788–9803

    Article  PubMed  CAS  Google Scholar 

  72. Ciancaglini P, Yadav MC, Simão AM et al (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723

    PubMed  CAS  Google Scholar 

  73. Murshed M, Harmey D, Millán JL et al (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  PubMed  CAS  Google Scholar 

  74. Fernley HN, Walker PG (1967) Studies on alkaline phosphatase. Inhibition by phosphate derivatives and the substrate specificity. Biochem J 104:1011–1018

    PubMed  CAS  Google Scholar 

  75. Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99:9445–9449

    Article  PubMed  CAS  Google Scholar 

  76. Harmey D, Hessle L, Narisawa S et al (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    Article  PubMed  CAS  Google Scholar 

  77. Thouverey C, Bechkoff G, Pikula S et al (2009) Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17:64–72

    Article  PubMed  CAS  Google Scholar 

  78. Foster B, Nagatomo K, Tso H et al (2013) Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28:271–282

    Article  PubMed  CAS  Google Scholar 

  79. Foster BL, Nagatomo KJ, Nociti FH et al (2012) Central role of pyrophosphate in acellular cementum formation. PLoS One 7:e38393

    Article  PubMed  CAS  Google Scholar 

  80. McKee MD, Nakano Y, Masica DL et al (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90:470–476

    Article  PubMed  CAS  Google Scholar 

  81. Yadav MC, de Oliveira RC, Foster BL et al (2012) Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27:1722–1734

    Article  PubMed  CAS  Google Scholar 

  82. Tesch W, Vandenbos T, Roschgr P et al (2003) Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase. J Bone Miner Res 18:117–125

    Article  PubMed  CAS  Google Scholar 

  83. Thompson MD, Killoran A, Percy ME et al (2006) Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder? Pediatr Neurol 34:303–307

    Article  PubMed  Google Scholar 

  84. Gospe SM (2006) Pyridoxine-dependent seizures: new genetic and biochemical clues to help with diagnosis and treatment. Curr Opin Neurol 19:148–153

    Article  PubMed  CAS  Google Scholar 

  85. Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  PubMed  CAS  Google Scholar 

  86. Narisawa S, Wennberg C, Millán JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  PubMed  CAS  Google Scholar 

  87. Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661

    Article  PubMed  CAS  Google Scholar 

  88. Mornet E (2007) Hypophosphatasia. Orphanet J Rare Dis 2:40

    Article  PubMed  Google Scholar 

  89. Hanics J, Barna J, Xiao J et al (2012) Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain. Cell Tissue Res 349(2):459–471

    Article  PubMed  CAS  Google Scholar 

  90. Kermer V, Ritter M, Albuquerque B et al (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485:208–211

    Article  PubMed  CAS  Google Scholar 

  91. Díez-Zaera M, Díaz-Hernández JI, Hernández-Álvarez E et al (2011) Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Mol Biol Cell 22:1014–1024

    Article  PubMed  CAS  Google Scholar 

  92. Ermonval M, Baudry A, Baychelier F et al (2009) The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells. PLoS One 4:e6497

    Article  PubMed  CAS  Google Scholar 

  93. Hatoff DE, Hardison WG (1981) Bile acids modify alkaline phosphatase induction and bile secretion pressure after bile duct obstruction in the rat. Gastroenterology 80:666–672

    PubMed  CAS  Google Scholar 

  94. Hatoff DE, Hardison WG (1982) Bile acid-dependent secretion of alkaline phosphatase in rat bile. Hepatology 2:433–439

    Article  PubMed  CAS  Google Scholar 

  95. Chida K, Taguchi M (2005) Localization of alkaline phosphatase and proteins related to intercellular junctions in primary cultures of fetal rat hepatocytes. Anat Embryol (Berl) 210:75–80

    Article  CAS  Google Scholar 

  96. Chida K, Taguchi M (2011) Localization of alkaline phosphatase and cathepsin D during cell restoration after colchicine treatment in primary cultures of fetal rat hepatocytes. Acta Histochem Cytochem 44:155–158

    Article  PubMed  CAS  Google Scholar 

  97. Ogawa H, Mink J, Hardison WG et al (1990) Alkaline phosphatase activity in hepatic tissue and serum correlates with amount and type of bile acid load. Lab Invest 62:87–95

    PubMed  CAS  Google Scholar 

  98. Halling Linder C, Englund UH, Narisawa S et al (2013) Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone 53(2):399–408

    Article  PubMed  CAS  Google Scholar 

  99. Kaplan MM, Righetti A (1970) Induction of rat liver alkaline phosphatase: the mechanism of the serum elevation in bile duct obstruction. J Clin Invest 49:508–516

    Article  PubMed  CAS  Google Scholar 

  100. Poelstra K, Bakker WW, Klok PA et al (1997) A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab Invest 76:319–327

    PubMed  CAS  Google Scholar 

  101. Alvaro D, Benedetti A, Marucci L et al (2000) The function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology 32:174–184

    Article  PubMed  CAS  Google Scholar 

  102. Becq F, Jensen TJ, Chang XB et al (1994) Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci U S A 91:9160–9164

    Article  PubMed  CAS  Google Scholar 

  103. Becq F, Fanjul M, Merten M et al (1993) Possible regulation of CFTR-chloride channels by membrane-bound phosphatases in pancreatic duct cells. FEBS Lett 327:337–342

    Article  PubMed  CAS  Google Scholar 

  104. Hori Y, Takeyama Y, Ueda T et al (1998) Impaired transport of lipopolysaccharide across the hepatocytes in rats with cerulein-induced experimental pancreatitis. Pancreas 16:148–153

    Article  PubMed  CAS  Google Scholar 

  105. Kanistanon D, Powell DA, Hajjar AM et al (2012) Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses. Infect Immun 80:943–951

    Article  PubMed  CAS  Google Scholar 

  106. Rietschel ET, Kirikae T, Schade FU et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    PubMed  CAS  Google Scholar 

  107. Bentala H, Verweij WR, Huizinga-Van der Vlag A et al (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18:561–566

    Article  PubMed  Google Scholar 

  108. Tuin A, Huizinga-Van der Vlag A, van Loenen-Weemaes AM et al (2006) On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol 290:G377–G385

    Article  PubMed  CAS  Google Scholar 

  109. Poelstra K, Bakker WW, Klok PA et al (1997) Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 151:1163–1169

    PubMed  CAS  Google Scholar 

  110. Nouwen EJ, De Broe ME (1994) Human intestinal versus tissue-nonspecific alkaline phosphatase as complementary urinary markers for the proximal tubule. Kidney Int Suppl 47:S43–S51

    PubMed  CAS  Google Scholar 

  111. March JG, Simonet BM, Grases F (2001) Determination of pyrophosphate in renal calculi and urine by means of an enzymatic method. Clin Chim Acta 314:187–194

    Article  PubMed  CAS  Google Scholar 

  112. Baumann JM, Bisaz S, Felix R et al (1977) The role of inhibitors and other factors in the pathogenesis of recurrent calcium-containing renal stones. Clin Sci Mol Med 53:141–148

    PubMed  CAS  Google Scholar 

  113. Laminski NA, Meyers AM, Sonnekus MI et al (1990) Prevalence of hypocitraturia and hypopyrophosphaturia in recurrent calcium stone formers: as isolated defects or associated with other metabolic abnormalities. Nephron 56:379–386

    Article  PubMed  CAS  Google Scholar 

  114. Goldberg RF, Austen WG, Zhang X et al (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A 105:3551–3556

    Article  PubMed  CAS  Google Scholar 

  115. Russell RG, Bisaz S, Fleisch H (1976) The influence of orthophosphate on the renal handling of inorganic pyrophosphate in man and dog. Clin Sci Mol Med 51:435–443

    PubMed  CAS  Google Scholar 

  116. Rachow JW, Ryan LM (1988) Inorganic pyrophosphate metabolism in arthritis. Rheum Dis Clin North Am 14:289–302

    PubMed  CAS  Google Scholar 

  117. Moochhala SH, Sayer JA, Carr G et al (2008) Renal calcium stones: insights from the control of bone mineralization. Exp Physiol 93:43–49

    Article  PubMed  CAS  Google Scholar 

  118. Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270

    Article  PubMed  CAS  Google Scholar 

  119. Carr G, Sayer JA, Simmons NL (2007) Expression and localisation of the pyrophosphate transporter, ANK, in murine kidney cells. Cell Physiol Biochem 20:507–516

    Article  PubMed  CAS  Google Scholar 

  120. Kapojos JJ, Poelstra K, Borghuis T et al (2003) Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int J Exp Pathol 84:135–144

    Article  PubMed  CAS  Google Scholar 

  121. Lencel P, Magne D (2011) Inflammaging: the driving force in osteoporosis? Med Hypotheses 76:317–321

    Article  PubMed  CAS  Google Scholar 

  122. Lencel P, Hardouin P, Magne D (2010) Do cytokines induce vascular calcification by the mere stimulation of TNAP activity? Med Hypotheses 75:517–521

    Article  PubMed  CAS  Google Scholar 

  123. Doherty TM, Fitzpatrick LA, Inoue D et al (2004) Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 25:629–672

    Article  PubMed  CAS  Google Scholar 

  124. Mintz GS, Popma JJ, Pichard AD et al (1995) Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91:1959–1965

    Article  PubMed  CAS  Google Scholar 

  125. Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103:14678–14683

    Article  PubMed  CAS  Google Scholar 

  126. Tyson KL, Reynolds JL, McNair R et al (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494

    Article  PubMed  CAS  Google Scholar 

  127. Ishimura E, Okuno S, Kitatani K et al (2002) Different risk factors for peripheral vascular calcification between diabetic and non-diabetic haemodialysis patients–importance of glycaemic control. Diabetologia 45:1446–1448

    Article  PubMed  CAS  Google Scholar 

  128. Shanahan CM, Cary NR, Salisbury JR et al (1999) Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    Article  PubMed  CAS  Google Scholar 

  129. Lomashvili KA, Garg P, Narisawa S et al (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int 73:1024–1030

    Article  PubMed  CAS  Google Scholar 

  130. Narisawa S, Harmey D, Yadav MC et al (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710

    Article  PubMed  CAS  Google Scholar 

  131. Markello TC, Pak LK, St HC et al (2011) Vascular pathology of medial arterial calcifications in NT5E deficiency: implications for the role of adenosine in pseudoxanthoma elasticum. Mol Genet Metab 103:44–50

    Article  PubMed  CAS  Google Scholar 

  132. Munroe PB, Olgunturk RO, Fryns JP et al (1999) Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 21:142–144

    Article  PubMed  CAS  Google Scholar 

  133. Lomashvili KA, Wang X, Wallin R et al (2011) Matrix Gla protein metabolism in vascular smooth muscle and role in uremic vascular calcification. J Biol Chem 286:28715–28722

    Article  PubMed  CAS  Google Scholar 

  134. Leroux-Berger M, Queguiner I, Maciel TT et al (2011) Pathologic calcification of adult vascular smooth muscle cells differs on their crest or mesodermal embryonic origin. J Bone Miner Res 26:1543–1553

    Article  PubMed  CAS  Google Scholar 

  135. Li L, Chang L, Pellet-Rostaing S et al (2009) Synthesis and evaluation of benzo[b]thiophene derivatives as inhibitors of alkaline phosphatases. Bioorg Med Chem 17:7290–7300

    Article  PubMed  CAS  Google Scholar 

  136. Dahl R, Sergienko EA, Su Y et al (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem 52:6919–6925

    Article  PubMed  CAS  Google Scholar 

  137. Li JJ, Zhu CG, Yu B et al (2007) The role of inflammation in coronary artery calcification. Ageing Res Rev 6:263–270

    Article  PubMed  CAS  Google Scholar 

  138. Stompór T, Pasowicz M, Sulłowicz W et al (2003) An association between coronary artery calcification score, lipid profile, and selected markers of chronic inflammation in ESRD patients treated with peritoneal dialysis. Am J Kidney Dis 41:203–211

    Article  PubMed  Google Scholar 

  139. Aikawa E, Nahrendorf M, Figueiredo JL et al (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116:2841–2850

    Article  PubMed  CAS  Google Scholar 

  140. Al-Aly Z, Shao JS, Lai CF et al (2007) Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice. Arterioscler Thromb Vasc Biol 27:2589–2596

    Article  PubMed  CAS  Google Scholar 

  141. Tintut Y, Patel J, Parhami F et al (2000) Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:2636–2642

    Article  PubMed  CAS  Google Scholar 

  142. Tintut Y, Patel J, Territo M et al (2002) Monocyte/macrophage regulation of vascular calcification in vitro. Circulation 105:650–655

    Article  PubMed  CAS  Google Scholar 

  143. Doherty TM, Asotra K, Fitzpatrick LA et al (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100:11201–11206

    Article  PubMed  CAS  Google Scholar 

  144. Iqbal K, Wang X, Blanchard J et al (2010) Alzheimer’s disease neurofibrillary degeneration: pivotal and multifactorial. Biochem Soc Trans 38:962–966

    Article  PubMed  CAS  Google Scholar 

  145. Díaz-Hernández M, Gómez-Ramos A, Rubio A et al (2010) Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 285:32539–32548

    Article  PubMed  CAS  Google Scholar 

  146. Vardy ER, Kellett KA, Cocklin SL et al (2012) Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener Dis 9:31–37

    Article  PubMed  CAS  Google Scholar 

  147. Glickman RM, Alpers DH, Drummey GD et al (1970) Increased lymph alkaline phosphatase after fat feeding: effects of medium chain triglycerides and inhibition of protein synthesis. Biochim Biophys Acta 201:226–235

    Article  PubMed  CAS  Google Scholar 

  148. Hodin RA, Graham JR, Meng S et al (1994) Temporal pattern of rat small intestinal gene expression with refeeding. Am J Physiol 266:G83–G89

    PubMed  CAS  Google Scholar 

  149. Narisawa S, Huang L, Iwasaki A et al (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23:7525–7530

    Article  PubMed  CAS  Google Scholar 

  150. Nakano T, Inoue I, Koyama I et al (2007) Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 292:G1439–G1449

    Article  PubMed  CAS  Google Scholar 

  151. Pool C, Nutting DF, Simmonds WJ et al (1991) Effect of Pluronic L81, a hydrophobic surfactant, on intestinal mucosal cholesterol homeostasis. Am J Physiol 261:G256–G262

    PubMed  CAS  Google Scholar 

  152. Mahmood A, Yamagishi F, Eliakim R et al (1994) A possible role for rat intestinal surfactant-like particles in transepithelial triacylglycerol transport. J Clin Invest 93:70–80

    Article  PubMed  CAS  Google Scholar 

  153. Lynes M, Narisawa S, Millán JL et al (2011) Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am J Physiol Regul Integr Comp Physiol 301:R1738–R1747

    Article  PubMed  CAS  Google Scholar 

  154. Malo MS, Alam SN, Mostafa G et al (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59:1476–1484

    Article  PubMed  CAS  Google Scholar 

  155. Ramasamy S, Nguyen DD, Eston MA et al (2011) Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 17:532–542

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buchet, R., Millán, J.L., Magne, D. (2013). Multisystemic Functions of Alkaline Phosphatases. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics