Skip to main content

A Workflow from Untargeted LC-MS Profiling to Targeted Natural Product Isolation

  • Protocol
  • First Online:
Book cover Metabolomics Tools for Natural Product Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1055))

Abstract

Liquid chromatography-mass spectrometry (LC-MS or HPLC-MS) is an extremely sensitive analytical technique that enables the detection of metabolites with a vast range of chemistries and molecular masses. Extracts from any biological starting material are first fractionated chromatographically on a stationary phase suitable for the retention of the target molecules. The eluent is then transferred directly to the ionization source for MS detection. There is a vast range of chromatographic separation methods and MS configurations. This chapter describes a method for the detection of a broad range of metabolites using reversed phase (C18) LC-MS as well as a method for the isolation of targeted metabolites of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou B, Xiao JF, Tuli L et al (2012) LC-MS-based metabolomics. Mol Biosyst 8:470–481

    Article  PubMed  CAS  Google Scholar 

  2. Watson JT, Sparkman OD (2008) Introduction to mass spectrometry. Instrumentation, applications and strategies for data interpretation, 4th edn. Wiley, Chichester, NY

    Google Scholar 

  3. Nakabayashi R, Kusano M, Kobayashi M et al (2009) Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70:1017–1029

    Article  PubMed  CAS  Google Scholar 

  4. Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548

    Article  PubMed  CAS  Google Scholar 

  5. Lu W, Bennett BD, Rabinowitz JD (2009) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242

    Google Scholar 

  6. Ellis DI, Dunn WB, Griffin JL et al (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–1266

    Article  PubMed  CAS  Google Scholar 

  7. De Vos RCH, Moco S, Lommen A et al (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2:778–791

    Article  PubMed  Google Scholar 

  8. Rojo D, Barbas C, Ruperez FJ (2012) LC-MS metabolomics of polar compounds. Bioanalysis 4:1235–1243

    Article  PubMed  CAS  Google Scholar 

  9. Keller BO, Sui J, Young AB et al (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627:71–81

    Article  PubMed  CAS  Google Scholar 

  10. Zelena E, Dunn WB, Broadhurst D et al (2009) Development of a robust and repeatable UPLC − MS method for the long-term metabolomic study of human serum. Anal Chem 81:1357–1364

    Article  PubMed  CAS  Google Scholar 

  11. van den Berg R, Hoefsloot H, Westerhuis J et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  PubMed  Google Scholar 

  12. Pluskal T, Castillo S, Villar-Briones A et al (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1471–2105

    Article  Google Scholar 

  13. Smith CA, Want EJ, O’Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  PubMed  CAS  Google Scholar 

  14. Lommen A, Kools H (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726

    Article  PubMed  CAS  Google Scholar 

  15. Howlett BJ, Idnurm A, Pedras MS (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Fiehn O, Sumner L, Ward J, Rhee SY, Dickerson J, Lange M, Lane G, Roessner U, Last R, Nikolau B (2007) Minimum reporting standards for plan biology context in metabolomic studies. Metabolomics 3, 195–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Callahan, D.L., Elliott, C.E. (2013). A Workflow from Untargeted LC-MS Profiling to Targeted Natural Product Isolation. In: Roessner, U., Dias, D. (eds) Metabolomics Tools for Natural Product Discovery. Methods in Molecular Biology, vol 1055. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-577-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-577-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-576-7

  • Online ISBN: 978-1-62703-577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics