Skip to main content

The Role of the Plasma Membrane Redox System in the Pathogenesis of Alzheimer’s Disease

  • Chapter
  • First Online:
Studies on Alzheimer's Disease

Abstract

Biological ageing is characterised by prolonged cellular damage over the lifespan, which results from oxidative stress processes that are implicated in both the initiation and progression of age-related disorders such as Alzheimer’s disease (AD). Recently, the role of the plasma membrane redox system, which consists of at least three major components: the lipophilic antioxidants (Coenzyme Q (CoQ) and α-tocopherol), the intracellular cytosolic electron donor (NAD(P)H) and membrane-associated quinone reductases (cytochrome b5 reductase and NADH-quinone), in protecting against oxidative stress has come into focus. Research shows that this redox system plays a protective role during mitochondrial dysfunction by aiding in the alternative glycolytic ATP production pathway and reducing oxidative stress. The different aspects of the plasma membrane operate in tandem to protect the membrane from lipid peroxidation, preventing the formation of semiquinone free radicals and reactive oxygen species, and to ultimately limit oxidative stress while still maintaining cellular levels of each component. Past studies have made a link between the plasma membrane redox system and AD and have revealed that each aspect is affected during the disease. Moreover, research has revealed that manipulating the system components can protect cells from amyloid-β toxicity, suggesting a key role in cell survival. To date, the relationship of the plasma membrane redox system to the brain changes seen in AD has yet to be fully elucidated, and we will review the current literature here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul HM, Sultana S, St Clair DK, Markesbery WR, Butterfield DA. Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radic Biol Med. 2008;45:1420–5.

    Article  PubMed  CAS  Google Scholar 

  2. Adlard PA, Bush AI. Metals and Alzheimer’s disease. J Alzheimers Dis. 2006;10:145–63.

    PubMed  Google Scholar 

  3. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants and the degenerative diseases of ageing. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  PubMed  CAS  Google Scholar 

  4. Apelt J, Bigl M, Wunderlich P, Schliebs R. Ageing-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci. 2004;22:475–84.

    Article  PubMed  CAS  Google Scholar 

  5. Arroyo A, Rodriguez-Aguilera JC, Santos-Ocana C, Villalba JM, Navas P. Stabilisation of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport. Methods Enzymol. 2004;378:207–17.

    Article  PubMed  CAS  Google Scholar 

  6. Battino M, Ferri E, Gorini A, Frederico Villa A, Rodrigues Huertas JF, Fiorella P, Genova ML, Lenaz G, Marchetti M. Natural distribution and occurrence of coenzyme Q homologues. Membr Biochem. 1990;9(3):179–90.

    Article  PubMed  CAS  Google Scholar 

  7. Behl C, Davis J, Cole GM, Schubert D. Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun. 1992;186:944–50.

    Article  PubMed  CAS  Google Scholar 

  8. Bentinger M, Tekle M, Dallner G. Coenzyme Q—biosynthesis and functions. Biochem Biophys Res Commun. 2010;396:74–9.

    Article  PubMed  CAS  Google Scholar 

  9. Beyer RE, Segura-Aguilar J, di Bernado S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M, Landi L, Lenaz G. The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol Aspects Med. 1997;18:S15–23.

    Article  PubMed  CAS  Google Scholar 

  10. Boothby LA, Doering PL. Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother. 2005;39:2073–80.

    Article  PubMed  CAS  Google Scholar 

  11. Bourdel-Marchasson I, Delmas-Beauvieux MC, Peuchant E, Richard-Harston S, Decamps A, Reignier B, Emeriau JP, Rainfray M. Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing. 2001;30:235–41.

    Article  PubMed  CAS  Google Scholar 

  12. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 1984;105:429–35.

    Article  PubMed  CAS  Google Scholar 

  13. Brunmark A, Cadenas E, Lind C, Segura-Aguilar J, Ernster L. DT-diaphorase-catalysed two-electron reduction of quinone epoxides. Free Radic Biol Med. 1987;3:181–8.

    Article  PubMed  CAS  Google Scholar 

  14. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983;221:281–90.

    Article  PubMed  CAS  Google Scholar 

  15. Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V. Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr Neurosci. 2002;5:229–39.

    Article  PubMed  CAS  Google Scholar 

  16. Cavelier G, Amzel LM. Mechanism of NAD(P)H:quinone reductase: ab initio studies of reduced flavin. Proteins. 2001;43:420–32.

    Article  PubMed  CAS  Google Scholar 

  17. Clement AB, Gimpl G, Behl C. Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radic Biol Med. 2010;48:1236–41.

    Article  PubMed  CAS  Google Scholar 

  18. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ. Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem. 2001;276:20466–73.

    Article  PubMed  CAS  Google Scholar 

  19. De Bustos F, Molina JA, Jimenez-Jimenez FJ, Garcia-Redondo A, Gomez-Escalonilla C, Porta-Etessam J, Berbel A, Zurdo M, Barcenilla B, Parrilla G, Enriquez-de-Salamanca R, Arenas J. Serum levels of coenzyme Q10 in patients with Alzheimer’s disease. J Neural Transm. 2000;107:233–9.

    Article  PubMed  Google Scholar 

  20. De Cabo R, Cabello R, Rios M, Lopez-Lluch G, Ingram DK, Lane MA, Navas P. Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol. 2004;39:297–304.

    Article  PubMed  Google Scholar 

  21. Edlund C, Soderberg M, Kristensson K, Dallner G. Ubiqionone, dolichol and cholesterol metabolism in ageing and Alzheimer’s disease. Biochem Cell Biol. 1992;70:422–8.

    Article  PubMed  CAS  Google Scholar 

  22. Egaña JT, Zambrano C, Nuñez MT, Gonzalez-Billault C, Maccioni RB. Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals. 2003;16:215–23.

    Article  PubMed  Google Scholar 

  23. Engelhart MJ, Geerlings MI, Ruitenberg A, Van Swieten JC, Hofman A, Witteman JC, Breteler MM. Dietary intake of antioxidants and risk of Alzheimer’s disease. J Am Med Assoc. 2002;287:3223–9.

    Article  CAS  Google Scholar 

  24. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquionone function. Biochim Biophys Acta. 1995;1271:195–204.

    Article  PubMed  Google Scholar 

  25. Ernster L, Navazio F. Soluble diaphorase in animal tissues. Acta Chem Scand. 1985;12:595–602.

    Google Scholar 

  26. Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci. 2002;22:1529–99.

    Google Scholar 

  27. Forsmark-Andree P, Dallner G, Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med. 1995;19:749–57.

    Article  PubMed  CAS  Google Scholar 

  28. Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M, Hyman BT, Backsai BJ. Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol. 2006;65:1082–9.

    Article  PubMed  CAS  Google Scholar 

  29. Genova ML, Pich MM, Biondi A, Bernacchio A, Falasca A, Bovina C, Formiggini G, Castelli GP, Lenaz G. Mitochondrial production of oxygen radical species and the role of coenzyme Q as an antioxidant. Exp Biol Med. 2003;228:506–13.

    CAS  Google Scholar 

  30. Glaso M, Nordbo G, Diep L, Bohmer T. Reduced concentrations of several vitamins in normal weight patients with late-onset dementia of the Alzheimer type without vascular diseases. J Nutr Health Aging. 2004;8:407–13.

    PubMed  CAS  Google Scholar 

  31. Hyun D-H, Emerson SS, Jo D-G, Mattson MP, De Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during ageing. Proc Natl Acad Sci U S A. 2006;103(52):19908–12.

    Article  PubMed  CAS  Google Scholar 

  32. Hyun D-H, Hernandez JO, Mattson MP, De Cabo R. The plasma membrane redox system in ageing. Ageing Res Rev. 2006;5:209–20.

    Article  PubMed  CAS  Google Scholar 

  33. Hyun D-H, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, De Cabo R. Up-regulation of plasma membrane-associated redox activies in neuronal cells lacking functional mitochondria. J Neurochem. 2007;100:1364–74.

    Article  PubMed  CAS  Google Scholar 

  34. Hyun D-H, Mughal MR, Yang H, Lee JH, Ko EJ, Hunt ND, De Cabo R, Mattson MP. The plasma membrane redox system is impaired by amyloid-β peptide and in the hippocampus and cerebral cortex of 3× TgAD mice. Exp Neurol. 2010;225:423–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ingold KU, Webb AC, Witter D, Burton GW, Metcalfe TA, Muller DP. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys. 1987;259:224–5.

    Article  PubMed  CAS  Google Scholar 

  36. Isobe C, Abe T, Terayama Y. Increase in the oxidised/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2009;28:449–54.

    Article  PubMed  CAS  Google Scholar 

  37. Jeandel C, Nicolas MB, Dubois F, Nabet-Belleville F, Penin F, Cuny G. Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology. 1989;35:275–82.

    Article  PubMed  CAS  Google Scholar 

  38. Jimenez-Jimenez FJ, de Bustos F, Molina JA, Benito-Leon J, Tallon-Barranco A, Gasalla T, Orti-Pareja M, Guillamon F, Rubio JC, Arenas J, Enriquez-de-Salamanca R. Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer’s disease. J Neural Transm. 1997;104(6–7):703–10.

    Google Scholar 

  39. Kagan VE, Tyurina YY, Witt E. Role of coenzyme Q and superoxide in vitamin E cycling. Subcell Biochem. 1998;30:491–507.

    Article  PubMed  CAS  Google Scholar 

  40. Kim EJ, Park YG, Baik EJ, Jung SJ, Won R, Nahm TS, Lee BH. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes. J Neurosci Res. 2005;79:670–9.

    Article  PubMed  CAS  Google Scholar 

  41. Koppal T, Subramanina R, Drake J, Prasad MR, Dhillon H, Butterfield DA. Vitamin E protects against Alzheimer’s amyloid peptide (25–35) induced changes in neocortical synaptosomal membrane lipid structure and composition. Brain Res. 1998;786:270–3.

    Article  PubMed  CAS  Google Scholar 

  42. Lass A, Forster MJ, Sohal RS. Effects of coenzyme Q10 and alpha-tocopherol administration on their tissue levels in the mouse: elevation of mitochondrial alpha-tocopherol by coenzyme Q10. Free Radic Biol Med. 1999;26:1375–82.

    Article  PubMed  CAS  Google Scholar 

  43. Lass A, Kwong L, Sohal RS. Mitochondrial coenzyme Q content and ageing. Biofactors. 1999;9:199–205.

    Article  PubMed  CAS  Google Scholar 

  44. Lass A, Sohal RS. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys. 1998;352:229–36.

    Article  PubMed  CAS  Google Scholar 

  45. Li G, Jack CR, Yang XF, Yang ES. Diet supplement CoQ10 delays brain atrophy in aged transgenic mice with mutations in the amyloid precursor protein: an in vivo volume MRI study. Biofactors. 2008;32:169–78.

    Article  PubMed  CAS  Google Scholar 

  46. Lovell MA, Markesbery WR. Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis. 2008;29:169–75.

    Article  PubMed  CAS  Google Scholar 

  47. Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998;95:8892–7.

    Article  PubMed  CAS  Google Scholar 

  48. Matsura T, Yamada K, Kawasaki T. Antioxidant role of cellular reduced coenzyme Q homologs and α-tocopherol in free radical-induced injury of hepatocytes isolated from rats fed diets with different vitamin E contents. Biochim Biophys Acta. 1992;1127:277–83.

    Article  PubMed  CAS  Google Scholar 

  49. Mariani C, Bresolin N, Farina E, Moggio M, Ferrante C, Ciafaloni E, Sertorelli S, Ciccone A, Scarlato G. Muscle biopsy in Alzheimer’s disease: morphological and biochemical findings. Clin Neuropathol. 1991;10:171–6.

    PubMed  CAS  Google Scholar 

  50. McGrath LT, McGleenon BM, Brennan S, McColl D, Mc IS, Passmore AP. Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. Q J Med. 2001;94:485–90.

    Article  CAS  Google Scholar 

  51. Merker MP, Bongard RD, Kettenhofen NJ, Okamato Y, Dawson CA. Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L36–43.

    PubMed  CAS  Google Scholar 

  52. Metcalfe T, Bowen DM, Muller DP. Vitamin E concentrations in human brain of patients with Alzheimer's disease, fetuses with Down’s syndrome, centenarians, and controls. Neurochem Res. 1989;14:1209–12.

    Article  PubMed  CAS  Google Scholar 

  53. Moreira PI, Santos MS, Sena C, Nunes E, Seica R, Oliveira CR. CoQ10 therapy attenuates amyloid beta-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp Neurol. 2005;196:112–9.

    Article  PubMed  CAS  Google Scholar 

  54. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59:1125–32.

    Article  PubMed  Google Scholar 

  55. Nishida Y, Yokota T, Takahashi T, Uchihara T, Jishage K, Mizusawa H. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun. 2006;350:530–6.

    Article  PubMed  CAS  Google Scholar 

  56. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–67.

    PubMed  CAS  Google Scholar 

  57. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 1999;19:1959–64.

    PubMed  CAS  Google Scholar 

  58. Ono K, Hasegawa K, Naiki H, Yamada M. Preformed beta-amyloid fibrils are destabilized by coenzyme Q10 in vitro. Biochem Biophys Res Commun. 2005;330:111–6.

    Article  PubMed  CAS  Google Scholar 

  59. Parihar MS, Brewer GJ. Amyloid beta as a modulator of synaptic plasticity. J Alzheimers Dis. 2010;22(3):741–63.

    PubMed  CAS  Google Scholar 

  60. Pereira C, Santos MS, Oliveira C. Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: protection by antioxidants. Neurobiol Dis. 1999;6:209–19.

    Article  PubMed  CAS  Google Scholar 

  61. Perkins AJ, Hendrie HC, Callahan CM, Gao S, Unverzagt FW, Xu Y, Hall KS, Hui SL. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am J Epidemiol. 1999;150:37–44.

    Article  PubMed  CAS  Google Scholar 

  62. Polidori MC, Mecocci P. Plasma susceptibility to free radical-induced antioxidant consumption and lipid peroxidation is increased in very old subjects with Alzheimer disease. J Alzheimers Dis. 2002;4:517–22.

    PubMed  CAS  Google Scholar 

  63. Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001;21:4183–7.

    PubMed  CAS  Google Scholar 

  64. Qi XL, Xiu J, Shan KR, Xiao Y, Gu R, Liu RY, Guan ZZ. Oxidative stress induced by beta-amyloid peptide(1–42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem Int. 2005;46:613–21.

    Article  PubMed  CAS  Google Scholar 

  65. Raina AK, Templeton DJ, Deak JC, Perry G, Smith MA. Quinone reductase (NQO1), a sensitive redox indicator, is increased in Alzheimer’s disease. Redox Rep. 1999;4:23–7.

    Article  PubMed  CAS  Google Scholar 

  66. Rauth AM, Goldberg Z, Misra V. DT-diaphorase: possible roles in cancer chemotherapy and carcinogenesis. Oncol Res. 1997;9:339–49.

    PubMed  CAS  Google Scholar 

  67. Resende R, Moreira PI, Proenca T, Deshpande A, Busciglio J, Pereira C, Oliveira CR. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med. 2008;44:2051–7.

    Article  PubMed  CAS  Google Scholar 

  68. Rosenfeldt F, Hilton D, Pepe S, Krum H. Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. Biofactors. 2003;18:91–100.

    Article  PubMed  CAS  Google Scholar 

  69. Rosenfeldt FL, Haas SJ, Krum H, Hadj A, Ng K, Leong JY, Watts GF. Coenzyme Q10 in the treatment of hypertension: a meta-analysis of the clinical trials. J Hum Hypertens. 2007;21:297–306.

    PubMed  CAS  Google Scholar 

  70. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991;266:11632–9.

    PubMed  CAS  Google Scholar 

  71. Santa-Mara I, Santpere G, MacDonald MJ, Gomez de Barreda E, Hernandez F, Moreno FJ, Ferrer I, Avila J. Coenzyme q induces tau aggregation, tau filaments, and Hirano bodies. J Neuropathol Exp Neurol. 2008;67:428–34.

    PubMed  Google Scholar 

  72. Santa-Maria I, Hernandez F, Martin CP, Avila J, Moreno FJ. Quinones facilitate the self-assembly of the phosphorylated tubulin binding region of tau into fibrillar polymers. Biochemistry. 2004;43:2888–97.

    Article  PubMed  CAS  Google Scholar 

  73. SantaCruz KS, Yazlovitskaya E, Collins J, Johnson J, DeCarli C. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging. 2004;25:63–9.

    Article  PubMed  CAS  Google Scholar 

  74. Soderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G. Lipid composition in different regions of the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. J Neurochem. 1992;59:1646–53.

    Article  PubMed  CAS  Google Scholar 

  75. Shults CW, Haas R. Clinical trials of coenzyme Q10 in neurological disorders. Biofactors. 2005;25:117–26.

    Article  PubMed  CAS  Google Scholar 

  76. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002;59:1541–50.

    Article  PubMed  Google Scholar 

  77. Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, Pratico D. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18:323–5.

    PubMed  CAS  Google Scholar 

  78. Tohgi H, Abe T, Nakanishi M, Hamato F, Sasaki K, Takahashi S. Concentrations of alpha-tocopherol and its quinone derivative in cerebrospinal fluid from patients with vascular dementia of the Binswanger type and Alzheimer type dementia. Neurosci Lett. 1994;174:73–6.

    Article  PubMed  CAS  Google Scholar 

  79. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660:171–99.

    Article  PubMed  CAS  Google Scholar 

  80. Villalba JM, Navarro F, Gomez-Diaz C, Arroyo A, Bello RI, Navas P. Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol Aspects Med. 1997;18(Suppl):S7–S13.

    Article  PubMed  CAS  Google Scholar 

  81. Villalba JM, Navas P. Plasma membrane redox system in the control of stress-induced apoptosis. Antiox Redox Sign. 2000;2(2):213–30.

    Article  CAS  Google Scholar 

  82. Wadsworth TL, Bishop JA, Pappu AS, Woltjer RL, Quinn JF. Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimers Dis. 2008;14:225–34.

    PubMed  CAS  Google Scholar 

  83. Wang Y, Santa-Cruz K, DeCarli C, Johnson JA. NAD(P)H:quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with Alzheimer’s disease. Neurobiol Aging. 2000;21:525–31.

    Article  PubMed  CAS  Google Scholar 

  84. Williamson KS, Gabbita SP, Mou S, West M, Pye QN, Markesbery WR, Cooney RV, Grammas P, Reimann-Philipp U, Floyd RA, Hensley K. The nitration product 5-nitro-gamma-tocopherol is increased in the Alzheimer brain. Nitric Oxide. 2002;6:221–7.

    Article  PubMed  CAS  Google Scholar 

  85. Yang X, Dai G, Li G, Yang ES. Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Mol Neurosci. 2010;41:110–3.

    Article  PubMed  CAS  Google Scholar 

  86. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106:14670–5.

    Article  PubMed  CAS  Google Scholar 

  87. Yao Y, Chinnici C, Tang H, Trojanowski JQ, Lee VM, Pratico D. Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. J Neuroinflammation. 2004;1:21.

    Article  PubMed  Google Scholar 

  88. Yatin SM, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer's disease. Neurochem Res. 1999;24:427–35.

    Article  PubMed  CAS  Google Scholar 

  89. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley AC. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing. 1992;21:91–4.

    Article  PubMed  CAS  Google Scholar 

  90. Zhou Y, Gopalakrishnan V, Richardson JS. Actions of neurotoxic beta-amyloid on calcium homeostasis and viability of PC12 cells are blocked by antioxidants but not by calcium channel antagonists. J Neurochem. 1996;67:1419–25.

    Article  PubMed  CAS  Google Scholar 

  91. Zou K, Gong JS, Yanagisawa K, Michikawa M. A novel function of monomeric amyloid beta protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci. 2002;22:4833–41.

    PubMed  CAS  Google Scholar 

  92. Battino M, Bompadre S, Leone L, Devecchi E, Degiuli A, D’Agostino F, Cambie G, D’Agostino M, Faggi L, Colturani G, Gorini A, Villa RF. Coenzyme Q, vitamin E and Apo-E alleles in Alzheimer disease. Biofactor. 2003;18(1–4):277–81.

    Google Scholar 

  93. Colucci MA, Couch GD, Moody CJ. Natural and synthetic quinines and their reduction by the quinine reductase enzyme NQO1: from synthetic organic chemistry to compounds with anticancer potential. Org Biomol Chem. 2007;6:637–56.

    Google Scholar 

  94. Ernster L, Navazio F. Soluble diaphorase in animal tissues. Acta Chem Scand. 1985;12:595–602.

    Article  Google Scholar 

  95. Jensen SK, Lauridsen C. α-Tocopherol stereoisomers. Vitam Horm. 2007;76:281–308.

    Google Scholar 

  96. Rigotti A. Absorption, transport and tissue delivery of vitamin E. Mol Aspects Med. 2007;28:423–36.

    Google Scholar 

  97. Wang X, Michaelis ML, Michaelis EK. Functional genomics of brain aging and Alzheimer’s disease: focus on selective neuronal vulnerability. Curr Genomics. 2010;11(8):618–33.

    Google Scholar 

Download references

Acknowledgements

P.A.A. and D.I.F. are paid consultants, and shareholders, of Prana Biotechnology Ltd, and A.I.B. is a shareholder of Prana Biotechnology Ltd. P.A.A., D.I.F. and A.I.B. are primarily supported by the National Health and Medical Research Council and the Australian Research Council, and P.A.A. and D.I.F. are also supported by the Joan and Peter Clemenger Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Adlard Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hancock, S.M., Finkelstein, D.I., Bush, A.I., Adlard, P.A. (2013). The Role of the Plasma Membrane Redox System in the Pathogenesis of Alzheimer’s Disease. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_6

Download citation

Publish with us

Policies and ethics