Skip to main content

In Vitro and In Vivo Demonstrations of Fluorescence by Unbound Excitation from Luminescence (FUEL)

  • Protocol
  • First Online:
Bioluminescent Imaging

Abstract

Bioluminescence imaging is a powerful technique that allows for deep-tissue analysis in living, intact organisms. However, in vivo optical imaging is compounded by difficulties due to light scattering and absorption. While light scattering is relatively difficult to overcome and compensate, light absorption by biological tissue is strongly dependent upon wavelength. For example, light absorption by mammalian tissue is highest in the blue-yellow part of the visible energy spectrum. Many natural bioluminescent molecules emit photonic energy in this range, thus in vivo optical detection of these molecules is primarily limited by absorption. This has driven efforts for probe development aimed to enhance photonic emission of red light that is absorbed much less by mammalian tissue using either direct genetic manipulation, and/or resonance energy transfer methods. Here we describe a recently identified alternative approach termed Fluorescence by Unbound Excitation from Luminescence (FUEL), where bioluminescent molecules are able to induce a fluorescent response from fluorescent nanoparticles through an epifluorescence mechanism, thereby significantly increasing both the total number of detectable photons as well as the number of red photons produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contag CH, Ross BD (2002) It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16:378–387

    Article  PubMed  Google Scholar 

  2. Dragavon J, Blazquez S, Rekiki A et al (2012) In vivo excitation of nanoparticles using luminescent bacteria. Proc Natl Acad Sci USA 109: 8890–8895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Choy G, O’Connor S, Diehn FE et al (2003) Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques 35:1022–1030

    CAS  PubMed  Google Scholar 

  4. Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633

    Article  CAS  PubMed  Google Scholar 

  5. Zinn KR, Chaudhuri TR, Szafran AA et al (2008) Noninvasive bioluminescence imaging in small animals. ILAR J 49:103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Madero-Visbal RA, Colon JF, Hernandez IC et al (2010) Bioluminescence imaging correlates with tumor progression in an orthotopic mouse model of lung cancer. Surg Oncol 21: 23–29

    Article  PubMed  Google Scholar 

  7. Warawa JM, Long D, Rosenke R et al (2011) Bioluminescent diagnostic imaging to characterize altered respiratory tract colonization by the burkholderia pseudomallei capsule mutant. Front Microbiol 2:133

    Article  PubMed Central  PubMed  Google Scholar 

  8. Roda A, Guardigli M (2011) Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem 402:69–76

    Article  PubMed  Google Scholar 

  9. Kielland A, Blom T, Nandakumar KS et al (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47:760–766

    Article  CAS  PubMed  Google Scholar 

  10. Dragavon J, Blazquez S, Rogers K et al (2011) Validation of method for enhanced production of red-shifted bioluminescent photons in vivo. Imaging, manipulation, and analysis of biomolecules, cells, and tissues IX, Vol. 7902. (eds. D.L. Farkas, D.V. Nicolau & R.C. Leif) 790210-790219 (International society for optics and photonics, 2011).

    Google Scholar 

  11. Colin M, Moritz S, Schneider H et al (2000) Haemoglobin interferes with the ex vivo luciferase luminescence assay: consequence for detection of luciferase reporter gene expression in vivo. Gene Ther 7:1333–1336

    Article  CAS  PubMed  Google Scholar 

  12. Branchini BR, Ablamsky DM, Rosenberg JC (2010) Chemically modified firefly luciferase is an efficient source of near-infrared light. Bioconjug Chem 21:2023–2030

    Article  CAS  PubMed  Google Scholar 

  13. Branchini BR, Rosenberg JC, Ablamsky DM et al (2011) Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Anal Biochem 414: 239–245

    Article  CAS  PubMed  Google Scholar 

  14. So M-K, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  CAS  PubMed  Google Scholar 

  15. Xiong L, Shuhendler AJ, Rao J (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  PubMed Central  PubMed  Google Scholar 

  16. Choi K-H, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Joe Dragavon is a Florence Gould Scholar of the Pasteur Foundation Postdoctoral Fellowship Program. The authors would like to extend their gratitude for financial support from the Pasteur Foundation of New York (to J.D., C.S.), the EU-FP7 Program “Automation” (to S.L.S.), the Institut Carnot Program 11 (to R.T., S.L.S.) and Project IMNOS (to R.T., S.L.S.), the Conny-Maeve Charitable Foundation (S.L.S.), the European Masters in Molecular Imaging (to I.T.), the Region Ile de France programs MODEXA (S.L.S.), SESAME (S.L.S.), and DimMalInf (S.L.S., R.T.), and the Institut Pasteur, Paris. Further, the authors would like to thank Bruno Baron of the Plate-Forme de Biophysique des Macromolécules et de leurs Interactions and Marie-Anne Nicola of the Plate-Forme d’Imagerie Dynamique for technical support and assistance, José Bengoechea and Herbert Schweizer for reagents, and Philippe Sansonetti for use of lab space, reagents, and equipment.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dragavon, J. et al. (2014). In Vitro and In Vivo Demonstrations of Fluorescence by Unbound Excitation from Luminescence (FUEL). In: Badr, C. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 1098. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-718-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-718-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-717-4

  • Online ISBN: 978-1-62703-718-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics