Skip to main content

The Aβcentric Pathway of Alzheimer’s Disease

  • Chapter
Book cover Abeta Peptide and Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD), the leading cause of dementia in the elderly, is an irreversible, progressive neurodegenerative disorder clinically characterized by memory loss and cognitive decline [1], leading invariably to death, usually within 7–10 years after diagnosis. The dominant risk factor for sporadic AD is increasing age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khachaturian, Z.S., Diagnosis of Alzheimer’s disease. Arch Neurol, 1985. 42(11):1097–1105.

    PubMed  CAS  Google Scholar 

  2. O’Brien, J., Ames, D., and Burns, A., Dementia (2nd Ed). 2000, Arnold: London.

    Google Scholar 

  3. Jellinger, K., Morphology of Alzheimer’s disease and related disorders, in Alzheimer’s disease: epidemiology, neuropathology, neurochemistry, and clinics. K. Maurer, P. Riederer, and H. Beckmann, Editors. 1990, Springer-Verlag: Berlin. 61–77.

    Google Scholar 

  4. Selkoe, D.J., Alzheimer’s disease: genotypes, phenotypes, and treatments. Science, 1997. 275(5300): 630–631.

    PubMed  CAS  Google Scholar 

  5. Michaelis, M.L., Dobrowsky, R.T., and Li, G., Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci, 2002. 19(3):289–293.

    PubMed  CAS  Google Scholar 

  6. Jellinger, K.A. and Bancher, C., Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl, 1998. 54:77–95.

    PubMed  CAS  Google Scholar 

  7. Perl, D.P., Neuropathology of Alzheimer’s disease and related disorders. Neurol Clin, 2000. 18(4):847–864.

    PubMed  CAS  Google Scholar 

  8. Geula, C., Wu, C.K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B.A., Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med, 1998. 4(7):827–831.

    PubMed  CAS  Google Scholar 

  9. Lu, M. and Kosik, K.S., Competition for microtubulebinding with dual expression of tau missense and splice isoforms. Mol Biol Cell, 2001. 12(1):171–184.

    PubMed  CAS  Google Scholar 

  10. Yankner, B.A., Duffy, L.K., and Kirschner, D.A., Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science, 1990. 250(4978):279–282.

    PubMed  CAS  Google Scholar 

  11. Lovestone, S. and Reynolds, C.H., The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience, 1997. 78(2):309–324.

    PubMed  CAS  Google Scholar 

  12. Frank, R.A., Galasko, D., Hampel, H., et al., Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease.Neurobiol Aging, 2003. 24(4):521–536.

    Google Scholar 

  13. Geula, C., The early diagnosis of Alzheimer’s disease, in Pathological diagnosis of Alzheimer’s disease. L.F.M. Scinto and K.R. Daffner, Editors. 2000, Humana: Totowa, NJ. 65–82.

    Google Scholar 

  14. Isacson, O., Seo, H., Lin, L., et al., Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci, 2002. 25(2):79–84.

    Google Scholar 

  15. Cummings, J.L., Vinters, H.V., Cole, G.M., and Khachaturian, Z.S., Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology, 1998. 51(1 Suppl 1): S2–17; discussion S65-17.

    PubMed  CAS  Google Scholar 

  16. Larson, E.B., Edwards, J.K., O’Meara, E., et al., Neuropathologic diagnostic outcomes from a cohort of outpatients with suspected dementia. J Gerontol A Biol Sci Med Sci, 1996. 51(suppl 6):M313–M318.

    PubMed  CAS  Google Scholar 

  17. Petersen, R.C., Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia, 2000. 15(3):93–101.

    PubMed  CAS  Google Scholar 

  18. Petersen, R.C., Smith, G.E., Ivnik, R.J., et al., Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memoryimpaired individuals. JAMA, 1995. 273:1274–1278.

    PubMed  CAS  Google Scholar 

  19. Petersen, R.C., Smith, G.E., Waring, S.C., et al., Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 1999. 56:303–308.

    PubMed  CAS  Google Scholar 

  20. Selkoe, D.J., Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev, 2001. 81(2):741–766.

    PubMed  CAS  Google Scholar 

  21. Hardy, J., Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci, 1997. 20(4):154–159.

    PubMed  CAS  Google Scholar 

  22. McLean, C.A., Cherny, R.A., Fraser, F.W., et al., Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol, 1999. 46(6):860–866.

    PubMed  CAS  Google Scholar 

  23. Harkany, T., Hortobagyi, T., Sasvari, et al., Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry, 1999. 23(6):963–1008.

    PubMed  CAS  Google Scholar 

  24. Harkany, T., Abraham, I., Konya, C., et al., Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev Neurosci, 2000. 11(4):329–382.

    PubMed  CAS  Google Scholar 

  25. Alzheimer, A., Uber eine eijenartige Erkrankung der Hirnride. Allg Z Psychiatr, 1907. 64:146–148.

    Google Scholar 

  26. Perusini, G., Uber klinisch und histologisch eigenartige psychische Erkankungen des spateren Lebensalters, in Histologische und Histolopathologische Arbeiten, F. Nissl, and A. Alzheimer, Editors. 1910, Gustav Fischer: Jena. 297–351.

    Google Scholar 

  27. Kraepelin, E., Das senile und prasenile Irresein, in Psychiatrie: Ein Lehrbuch fur Studierende und Arzte. E. Kraepelin, Editor. 1910, Verlag von Johann Ambrosius Barth: Leipzig. 533–554; 593–632.

    Google Scholar 

  28. Neumann, M.A. and Cohn, R., Incidence of Alzheimer’s disease in a large mental hospital: relation to senile psychosis and psychosis with cerebral arteriosclerosis. Arch Neurol Psychiatr, 1953. 69:615–636.

    CAS  Google Scholar 

  29. Rorsman, B., Hagnell, O., and Lanke, J., Prevalence and incidence of senile and multi-infarct dementia in the Lundby study: a comparison between the time periods 1947–1957 and 1957–1972. Neuropsychobiology, 1986. 15:122–129.

    PubMed  CAS  Google Scholar 

  30. Kay, D.W.K., Beamish, P., and Roth, M., Old age mental disorders in Newcastle upon Tyne. Part I: a study of prevalence. Br J Psychiatry, 1964. 110:146–158.

    PubMed  CAS  Google Scholar 

  31. Sjogren, T., Sjogren, H., and Lindgren, G.H., Morbus Alzheimer and morbus Pick: a genetic, clinical and patho-anatomical study. Acta Psychiatr Neurol Scand, 1952. 82(Suppl):1–152.

    CAS  Google Scholar 

  32. Larsson, T., Sjogren, T., and Jacobsen, G., Senile dementia: a clinical, sociomedical and genetic study. Acta Psychiatr Scand, 1963. 167(Suppl): 1–259.

    Google Scholar 

  33. Tomlinson, B.E., Blessed, G., and Roth, M., Observations on the brains of non-demented old people. J Neurol Sci, 1968. 7(2):331–356.

    PubMed  CAS  Google Scholar 

  34. Evans, D.A., Funkenstein, H.H., Albert, M.S., et al., Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA, 1989. 262(18):2551–2556.

    PubMed  CAS  Google Scholar 

  35. Davies, P. and Maloney, A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976. 2:1400–1403.

    Google Scholar 

  36. Scholz, W., Studien zur Pathologie der Hirngefasse. II Die drusige Entartung der Hirnarterien und Capillaren. Z Gesamte Neurol Psychiatr, 1938. 162:694–715.

    Google Scholar 

  37. Pantelakis, S., Un type particulier d’angiopathie senile du systeme nerveux central: l’angiopathie congophile. Topographie et frequence. Monat Psychiatr Neurol, 1954. 128:219–256.

    CAS  Google Scholar 

  38. Terry, R.D., Gonatas, N.K., and Weiss, M., Ultrastructural studies in Alzheimer’s presenile dementia. Am J Pathol, 1964. 44:269–287.

    PubMed  CAS  Google Scholar 

  39. Kidd, M., Paired helical filaments in elctron microscopy of Alzheimer’s disease. Nature, 1963. 197:192–193.

    PubMed  CAS  Google Scholar 

  40. Kosik, K.S., Tau protein and neurodegeneration.Mol Neurobiol, 1990. 4(3–4):171–179.

    PubMed  CAS  Google Scholar 

  41. Nukina, N. and Ihara, Y., One of the antigenic determinants of paired helical filaments is related to tau protein. J Biochem (Tokyo), 1986. 99(5):1541–1544.

    PubMed  CAS  Google Scholar 

  42. Kosik, K.S., Joachim, C.L., and Selkoe, D.J., Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc Natl Acad Sci U S A, 1986. 83(11):4044–4048.

    PubMed  CAS  Google Scholar 

  43. Goedert, M., Wischik, C.M., Crowther, R.A., et al., Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer’s disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A, 1988. 85(11):4051–4055.

    Google Scholar 

  44. Wischik, C.M., Novak, M., Thogersen, H.C., et al., Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer’s disease. Proc Natl Acad Sci U S A, 1988. 85(12):4506–4510.

    Google Scholar 

  45. Kosik, K.S., Duffy, L.K., Dowling, M.M., et al., Microtubule-associated protein 2: monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sci U S A, 1984. 81(24): 7941–7945.

    PubMed  CAS  Google Scholar 

  46. Selkoe, D.J., Ihara, Y., and Salazar, F.J., Alzheimer’s disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science, 1982. 215(4537):1243–1245.

    PubMed  CAS  Google Scholar 

  47. Virchow, R., Zur cellulosefrage, in Virchows Arch Pathol Anat Physiol, 1854. 416–426.

    Google Scholar 

  48. Glenner, G.G. and Wong, C.W., Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun, 1984. 120(3):885–890.

    PubMed  CAS  Google Scholar 

  49. Glenner, G.G., Wong, C.W., Quaranta, V., and Eanes, E.D., The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl Pathol, 1984. 2(6):357–369.

    Google Scholar 

  50. Masters, C.L., Simms, G., Weinman, N.A., et al., Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 82(12):4245–4249.

    PubMed  CAS  Google Scholar 

  51. St George-Hyslop, P.H., Tanzi, R.E., Polinsky, R.J., et al.., The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science, 1987. 235(4791):885–890.

    PubMed  CAS  Google Scholar 

  52. Tanzi, R.E., St George-Hyslop, P.H., Haines, J.L., et al., The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid beta-protein gene. Nature, 1987. 329(6135):156–157.

    PubMed  CAS  Google Scholar 

  53. Van Broeckhoven, C., Genthe, A.M., Vandenberghe, A., et al., Failure of familial Alzheimer’s disease to segregate with the A4-amyloid gene in several European families. Nature, 1987. 329(6135):153–155.

    Google Scholar 

  54. Kang, J., Lemaire, H.G., Unterbeck, A., Salbaum, J.M., et al., The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987. 325(6106):733–736.

    Google Scholar 

  55. Tanzi, R.E., Gusella, J.F., Watkins, P.C., et al., Amyloid beta protein gene:cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987. 235(4791):880–884.

    Google Scholar 

  56. Robakis, N.K., Wisniewski, H.M., Jenkins, E.C., et al., Chromosome 21q21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer’s disease and Down syndrome. Lancet, 1987. 1(8529):384–385.

    PubMed  CAS  Google Scholar 

  57. Van Broeckhoven, C., Haan, J., Bakker, E., et al., Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science, 1990. 248(4959):1120–1122.

    Google Scholar 

  58. Levy, E., Carman, M.D., Fernandez-Madrid, I.J., et al., Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 1990. 248(4959):1124–1126.

    PubMed  CAS  Google Scholar 

  59. Goate, A., Chartier-Harlin, M.C., Mullan, M., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991. 349(6311):704–706.

    PubMed  CAS  Google Scholar 

  60. Citron, M., Oltersdorf, T., Haass, C., et al., Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature, 1992. 360(6405):672–674.

    PubMed  CAS  Google Scholar 

  61. Schellenberg, G.D., Bird, T.D., Wijsman, E.M., et al., Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science, 1992. 258(5082):668–671.

    PubMed  CAS  Google Scholar 

  62. Mullan, M., Houlden, H., Windelspecht, M., et al., A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet, 1992. 2(4):340–342.

    PubMed  CAS  Google Scholar 

  63. St George-Hyslop, P., Haines, J., Rogaev, E., et al., Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet, 1992. 2(4):330–334.

    PubMed  CAS  Google Scholar 

  64. Van Broeckhoven, C., Backhovens, H., Cruts, M., et al., Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nat Genet, 1992. 2(4):335–339.

    PubMed  Google Scholar 

  65. Yankner, B.A., Dawes, L.R., Fisher, S., et al., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 1989. 245(4916):417–420.

    PubMed  CAS  Google Scholar 

  66. Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res, 1991. 563(1–2):311–314.

    PubMed  CAS  Google Scholar 

  67. Pike, C.J., Walencewicz, A.J., Glabe, C.G., and Cotman, C.W., Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures. Eur J Pharmacol, 1991. 207(4):367–368.

    PubMed  CAS  Google Scholar 

  68. Bush, A.I., Multhaup, G., Moir, R.D., et al., A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem, 1993. 268(22):16109–16112.

    PubMed  CAS  Google Scholar 

  69. Bush, A.I., Pettingell, W.H., Multhaup, G., Paradis, M., et al., Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science, 1994. 265(5177):1464–1467.

    PubMed  CAS  Google Scholar 

  70. Strittmatter, W.J., Saunders, A.M., Schmechel, D., et al., Apolipoprotein E: high-avidity binding to betaamyloid and increased frequency of type 4 allele in late-onset familial Alzheimer’s disease. Proc Natl Acad Sci U S A, 1993. 90(5):1977–1981.

    PubMed  CAS  Google Scholar 

  71. Corder, E.H., Saunders, A.M., Strittmatter, W.J., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993. 261(5123):921–923.

    PubMed  CAS  Google Scholar 

  72. Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., et al., Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A, 1993. 90(20):9649–9653.

    PubMed  CAS  Google Scholar 

  73. Sherrington, R., Rogaev, E.I., Liang, Y., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 1995. 375(6534): 754–760.

    PubMed  CAS  Google Scholar 

  74. Levy-Lahad, E., Wasco, W., Poorkaj, P., et al., Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 1995. 269(5226): 973–977.

    PubMed  CAS  Google Scholar 

  75. Scheuner, D., Eckman, C., Jensen, M., et al., Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med, 1996. 2(8):864–870.

    PubMed  CAS  Google Scholar 

  76. Selkoe, D.J., Alzheimer’s disease is a synaptic failure. Science, 2002. 298(5594):789–791.

    PubMed  CAS  Google Scholar 

  77. Selkoe, D.J., Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci, 2000. 924:17–25.

    Article  PubMed  CAS  Google Scholar 

  78. Selkoe, D.J., The genetics and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins. Neurol Clin, 2000. 18(4):903–922.

    PubMed  CAS  Google Scholar 

  79. Masters, C.L. and Beyreuther, K., Alzheimer’s disease. BMJ, 1998. 316(7129):446–448.

    PubMed  CAS  Google Scholar 

  80. Masters, C.L. and Beyreuther, K., Molecular neuropathology of Alzheimer’s disease. Arzneimittelforschung, 1995. 45(3A):410–412.

    PubMed  CAS  Google Scholar 

  81. Bartus, R.T., Dean, R.L., 3rd, Beer, B., and Lippa, A.S., The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982. 217(4558):408–414.

    PubMed  CAS  Google Scholar 

  82. Bartus, R.T. and Emerich, D.F., Cholinergic markers in Alzheimer’s disease. JAMA, 1999. 282(23):2208–2209.

    PubMed  CAS  Google Scholar 

  83. Masters, C.L. and Beyreuther, K., Henryk M. Wisniewski and the amyloid theory of Alzheimer’s disease. J Alzheimers Dis, 2001. 3(1):83–86.

    PubMed  Google Scholar 

  84. Martins, R.N., Robinson, P.J., Chleboun, J.O., et al., The molecular pathology of amyloid deposition in Alzheimer’s disease. Mol Neurobiol, 1991. 5(2–4): 389–398.

    PubMed  CAS  Google Scholar 

  85. Beyreuther, K. and Masters, C.L., Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol., 1991. 1(4):241–251.

    PubMed  CAS  Google Scholar 

  86. Cappai, R. and White, A.R., Amyloid beta. Int J Biochem Cell Biol, 1999. 31(9):885–889.

    PubMed  CAS  Google Scholar 

  87. Haass, C., Koo, E.H., Mellon, A., et al., Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature, 1992. 357(6378):500–503.

    PubMed  CAS  Google Scholar 

  88. Seubert, P., Vigo-Pelfrey, C., Esch, F., et al., Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature, 1992. 359(6393):325–327.

    PubMed  CAS  Google Scholar 

  89. Shoji, M., Golde, T.E., Ghiso, J., et al.., Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science, 1992. 258(5079): 126–129.

    PubMed  CAS  Google Scholar 

  90. Harper, J.D. and Lansbury, P.T., Jr., Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem, 1997. 66:385–407.

    PubMed  CAS  Google Scholar 

  91. Soto, C., Castano, E.M., Frangione, B., and Inestrosa, N.C., The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J Biol Chem, 1995. 270(7):3063–3067.

    PubMed  CAS  Google Scholar 

  92. Inoue, S., Kuroiwa, M., Tan, R., and Kisilevsky, R., A high resolution ultrastructural comparison of isolated and in situ murine AA amyloid fibrils. Amyloid, 1998. 5(2):99–110.

    PubMed  CAS  Google Scholar 

  93. Cohen, A.S., Shirahama, T., and Skinner, M., Electron microscopy of amyloid, in Electron Microscopy of Proteins. J.R. Harris, Editor. 1982, Academic Press: London. 165–205.

    Google Scholar 

  94. Westermark, P., Benson, M.D., Buxbaum, J.N., et al., Amyloid fibril protein nomenclature-2002. Amyloid, 2002. 9(3):197–200.

    PubMed  CAS  Google Scholar 

  95. Westermark, P., Araki, S., Benson, M.D., et al., Nomenclature of amyloid fibril proteins. Report from the meeting of the International Nomenclature Committee on Amyloidosis, August 8–9, 1998. Part 1. Amyloid, 1999. 6(1):63–66.

    PubMed  CAS  Google Scholar 

  96. Stevens, F.J. and Kisilevsky, R., Immunoglobulin light chains, glycosaminoglycans, and amyloid. Cell Mol Life Sci, 2000. 57(3):441–449.

    PubMed  CAS  Google Scholar 

  97. Perry, E.K., Tomlinson, B.E., Blessed, G., et al.., Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J, 1978. 2(6150):1457–1459.

    PubMed  CAS  Google Scholar 

  98. Blessed, G., Tomlinson, B.E., and Roth, M., The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry, 1968. 114(512):797–811.

    PubMed  CAS  Google Scholar 

  99. Yamaguchi, H., Hirai, S., Morimatsu, M., et al., Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol (Berl), 1988. 77(2):113–119.

    CAS  Google Scholar 

  100. Skovronsky, D.M., Doms, R.W., and Lee, V.M., Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J Cell Biol, 1998. 141(4):1031–1039.

    PubMed  CAS  Google Scholar 

  101. Bush, A.I., The metallobiology of Alzheimer’s disease. Trends Neurosci, 2003. 26(4):207–214.

    PubMed  CAS  Google Scholar 

  102. Haass, C., Schlossmacher, M.G., Hung, A.Y., et al., Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature, 1992. 359(6393):322–325.

    PubMed  CAS  Google Scholar 

  103. Mega, M.S., Chu, T., Mazziotta, J.C., et al., Mapping biochemistry to metabolism: FDG-PET and amyloid burden in Alzheimer’s disease. Neuroreport, 1999. 10(14):2911–2917.

    Google Scholar 

  104. Greenberg, S.M., Rebeck, G.W., et al., Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol, 1995. 38(2): 254–259.

    PubMed  CAS  Google Scholar 

  105. McLean, C.A., Beyreuther, K., and Masters, C.L., Amyloid Abeta levels in Alzheimer’s disease-A diagnostic tool and the key to understanding the natural history of Abeta? J Alzheimers Dis, 2001. 3(3):305–312.

    PubMed  CAS  Google Scholar 

  106. Naslund, J., Haroutunian, V., Mohs, R., et al., Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA, 2000. 283(12):1571–1577.

    PubMed  CAS  Google Scholar 

  107. Lue, L.F., Kuo, Y.M., Roher, A.E., et al., Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol, 1999. 155(3):853–862.

    PubMed  CAS  Google Scholar 

  108. Wang, J., Dickson, D.W., Trojanowski, J.Q., and Lee, V.M., The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. ExNeurol, 1999. 158(2):328–337.

    CAS  Google Scholar 

  109. Braak, H. and Braak, E., Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl), 1991. 82(4):239–259.

    CAS  Google Scholar 

  110. Hardy, J. and Selkoe, D.J., The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002. 297(5580): 353–356.

    PubMed  CAS  Google Scholar 

  111. Price, J.L. and Morris, J.C., Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol, 1999. 45(3):358–368.

    PubMed  CAS  Google Scholar 

  112. Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., et al., Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis, 1996. 3(1):16–32.

    PubMed  CAS  Google Scholar 

  113. Mann, D.M., Yates, P.O., Marcyniuk, B., and Ravindra, C.R., The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol, 1986. 12(5):447–457.

    PubMed  CAS  Google Scholar 

  114. Selkoe, D.J., The molecular pathology of Alzheimer’s disease. Neuron, 1991. 6(4):487–498.

    PubMed  CAS  Google Scholar 

  115. Hardy, J.A. and Higgins, G.A., Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992. 256(5054):184–185.

    Google Scholar 

  116. Checler, F. and Vincent, B., Alzheimer’s and prion diseases: distinct pathologies, common proteolytic denominators.Trends Neurosci, 2002. 25(12):616–620.

    PubMed  CAS  Google Scholar 

  117. Robinson, S.R. and Bishop, G.M., The search for an amyloid solution. Science, 2002. 298(5595):962–964; author reply 962–964.

    PubMed  Google Scholar 

  118. Robinson, S.R. and Bishop, G.M., Abeta as a bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol Aging, 2002. 23(6):1051–1072.

    PubMed  CAS  Google Scholar 

  119. Mudher, A. and Lovestone, S., Alzheimer’s disease-do tauists and baptists finally shake hands? Trends Neurosci, 2002. 25(1):22–26.

    PubMed  CAS  Google Scholar 

  120. Selkoe, D.J., Translating cell biology into therapeutic advances in Alzheimer’s disease.Nature, 1999. 399(6738 Suppl):A23–31.

    PubMed  CAS  Google Scholar 

  121. St George-Hyslop, P.H., Genetic factors in the genesis of Alzheimer’s disease. Ann N Y Acad Sci, 2000. 924:1–7.

    Article  PubMed  CAS  Google Scholar 

  122. Haass, C., Hung, A.Y., Selkoe, D.J., and Teplow, D.B., Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem, 1994. 269(26):17741–17748.

    PubMed  CAS  Google Scholar 

  123. Cai, X.D., Golde, T.E., and Younkin, S.G., Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science, 1993. 259(5094):514–516.

    PubMed  CAS  Google Scholar 

  124. Suzuki, N., Cheung, T.T., Cai, X.D., et al., An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science, 1994. 264(5163): 1336–1340.

    PubMed  CAS  Google Scholar 

  125. Citron, M., Vigo-Pelfrey, C., Teplow, D.B., et al., Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer’s disease mutation. Proc Natl Acad Sci U S A, 1994. 91(25):11993–11997.

    Google Scholar 

  126. Miklossy, J., Taddei, K., Suva, D., et al.., Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol Aging, 2003. 24(5):655–662.

    PubMed  CAS  Google Scholar 

  127. Rogaev, E.I., Sherrington, R., Rogaeva, E.A., et al.., Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 1995. 376(6543):775–778.

    PubMed  CAS  Google Scholar 

  128. Thinakaran, G., Teplow, D.B., Siman, R., et al., Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “beta-secretase” site occurs in the golgi apparatus. J Biol Chem, 1996. 271(16):9390–9397.

    PubMed  CAS  Google Scholar 

  129. Citron, M., Westaway, D., Xia, W., Carlson, G., et al.., Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med, 1997. 3(1):67–72.

    PubMed  CAS  Google Scholar 

  130. Duff, K., Eckman, C., Zehr, C., et al.., Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature, 1996. 383(6602):710–713.

    PubMed  CAS  Google Scholar 

  131. Poirier, J., Davignon, J., Bouthillier, D., et al., Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet, 1993. 342(8873):697–699.

    PubMed  CAS  Google Scholar 

  132. Borchelt, D.R., Thinakaran, G., Eckman, C.B., et al., Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 1996. 17(5):1005–1013.

    PubMed  CAS  Google Scholar 

  133. Polvikoski, T., Sulkava, R., Haltia, M., et al., Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med, 1995. 333(19):1242–1247.

    PubMed  CAS  Google Scholar 

  134. Rebeck, G.W., Reiter, J.S., Strickland, D.K., and Hyman, B.T., Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron, 1993. 11(4):575–580.

    PubMed  CAS  Google Scholar 

  135. Hyman, B.T., West, H.L., Rebeck, G.W., et al., Quantitative analysis of senile plaques in Alzheimer’s disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc Natl Acad Sci U S A, 1995. 92(8):3586–3590.

    PubMed  CAS  Google Scholar 

  136. Mehta, N.D., Refolo, L.M., Eckman, C., et al., Increased Abeta42(43) from cell lines expressing presenilin 1 mutations. Ann Neurol, 1998. 43(2): 256–258.

    PubMed  CAS  Google Scholar 

  137. Beyreuther, K., Dyrks, T., Hilbich, C., et al., Amyloid precursor protein (APP) and beta A4 amyloid in Alzheimer’s disease and Down syndrome. Prog Clin Biol Res, 1992. 379:159–182.

    PubMed  CAS  Google Scholar 

  138. Masters, C.L. and Beyreuther, K.T., The pathology of the amyloid A4 precursor of Alzheimer’s disease. Ann Med, 1989. 21(2):89–90.

    PubMed  CAS  Google Scholar 

  139. Dyrks, T., Weidemann, A., Multhaup, G., et al., Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J, 1988. 7(4):949–957.

    PubMed  CAS  Google Scholar 

  140. Goldgaber, D., Lerman, M.I., McBride, O.W., et al., Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science, 1987. 235(4791):877–880.

    PubMed  CAS  Google Scholar 

  141. Robakis, N.K., Ramakrishna, N., Wolfe, G., and Wisniewski, H.M., Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A, 1987. 84(12):4190–4194.

    PubMed  CAS  Google Scholar 

  142. Olson, M.I. and Shaw, C.M., Presenile dementia and Alzheimer’s disease in mongolism. Brain, 1969. 92(1):147–156.

    PubMed  CAS  Google Scholar 

  143. Querfurth, H.W., Wijsman, E.M., St George-Hyslop, P.H., and Selkoe, D.J., Beta APP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer’s disease-1 family. Brain Res Mol Brain Res, 1995. 28(2):319–337.

    PubMed  CAS  Google Scholar 

  144. Turner, P.R., O’Connor, K., Tate, W.P., and Abraham, W.C., Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol, 2003. 70(1):1–32.

    PubMed  CAS  Google Scholar 

  145. Kuentzel, S.L., Ali, S.M., Altman, R.A., et al., The Alzheimer beta-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem J, 1993. 295(Pt 2):367–378.

    PubMed  CAS  Google Scholar 

  146. Citron, M., Identifying proteases that cleave AP. Ann N Y Acad Sci, 2000. 920:192–196.

    CAS  Google Scholar 

  147. Mullan, M., Crawford, F., Axelman, K., et al., A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of betaamyloid. Nat Genet, 1992. 1(5):345–347.

    PubMed  CAS  Google Scholar 

  148. Hardy, J., Framing beta-amyloid. Nat Genet, 1992. 1(4):233–234.

    PubMed  CAS  Google Scholar 

  149. Hendriks, L., van Duijn, C.M., Cras, P., et al., Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet, 1992. 1(3):218–221.

    PubMed  CAS  Google Scholar 

  150. Wisniewski, T., Ghiso, J., and Frangione, B., Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun, 1991. 179(3):1247–1254.

    PubMed  CAS  Google Scholar 

  151. Citron, M., Secretases as targets for the treatment of Alzheimer’s disease. Mol Med Today,2000. 6(10): 392–397.

    PubMed  CAS  Google Scholar 

  152. Seubert, P., Oltersdorf, T., Lee, M.G., et al.., Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 1993. 361(6409):260–263.

    PubMed  CAS  Google Scholar 

  153. Citron, M., Haass, C., and Selkoe, D.J., Production of amyloid-beta-peptide by cultured cells: no evidence for internal initiation of translation at Met596. Neurobiol Aging, 1993. 14(6):571–573.

    PubMed  CAS  Google Scholar 

  154. Muller, U. and Kins, S., APP on the move. Trends Mol Med, 2002. 8(4):152–155.

    PubMed  CAS  Google Scholar 

  155. Andrews, N.C., Mining copper transport genes. Proc Natl Acad Sci U S A, 2001. 98(12):6543–6545.

    PubMed  CAS  Google Scholar 

  156. Barnham, K.J., Masters, C.L., and Bush, A.I., Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov, 2004. 3(3):205–214.

    PubMed  CAS  Google Scholar 

  157. Culotta, V.C., Klomp, L.W., Strain, J., et al.., The copper chaperone for superoxide dismutase. J Biol Chem, 1997. 272(38):23469–23472.

    Google Scholar 

  158. Waggoner, D.J., Bartnikas, T.B., and Gitlin, J.D., The role of copper in neurodegenerative disease. Neurobiol Dis, 1999. 6(4):221–230.

    PubMed  CAS  Google Scholar 

  159. Maynard, C.J., Cappai, R., Volitakis, I., et al., Overexpression of Alzheimer’s disease amyloidbeta opposes the age-dependent elevations of brain copper and iron. J Biol Chem, 2002. 277(47): 44670–44676.

    PubMed  CAS  Google Scholar 

  160. White, A.R., Reyes, R., Mercer, J.F., et al., Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res, 1999. 842(2):439–444.

    PubMed  CAS  Google Scholar 

  161. Bayer, T.A., Schafer, S., Simons, A., et al., Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A, 2003. 100(24):14187–14192.

    PubMed  CAS  Google Scholar 

  162. Phinney, A.L., Drisaldi, B., Schmidt, S.D., et al., In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci U S A, 2003. 100(24):14193–14198.

    PubMed  CAS  Google Scholar 

  163. Borchardt, T., Camakaris, J., Cappai, R., Masters, C.L., Beyreuther, K., and Multhaup, G., Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursorprotein secretion. Biochem J, 1999. 344(Pt 2):461–467.

    PubMed  CAS  Google Scholar 

  164. Barnham, K.J., McKinstry, W.J., Multhaup, G., et al., Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem, 2003. 278(19):17401–17407.

    PubMed  CAS  Google Scholar 

  165. De Strooper, B., Saftig, P., Craessaerts, K., et al., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998. 391(6665):387–390.

    PubMed  Google Scholar 

  166. Wolfe, M.S., Xia, W., Ostaszewski, B.L., et al., Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 1999. 398(6727):513–517.

    PubMed  CAS  Google Scholar 

  167. Kwok, J.B., Taddei, K., Hallupp, M., et al., Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer’s disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport, 1997. 8(6):1537–1542.

    PubMed  CAS  Google Scholar 

  168. Crook, R., Verkkoniemi, A., Perez-Tur, J., et al., A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med, 1998. 4(4):452–455.

    PubMed  CAS  Google Scholar 

  169. Houlden, H., Baker, M., McGowan, E., et al., Variant Alzheimer’s disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-beta concentrations. Ann Neurol, 2000. 48(5):806–808.

    Google Scholar 

  170. Verkkoniemi, A., Kalimo, H., Paetau, A., et al., Variant Alzheimer’s disease with spastic paraparesis: neuropathological phenotype. J Neuropathol Exp Neurol, 2001. 60(5):483–492.

    PubMed  CAS  Google Scholar 

  171. Smith, M.J., Kwok, J.B., McLean, C.A., et al., Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol, 2001.49(1):125–129.

    PubMed  CAS  Google Scholar 

  172. Kovacs, D.M., Fausett, H.J., Page, K.J., et al., Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med, 1996. 2(2):224–229.

    PubMed  CAS  Google Scholar 

  173. Kimberly, W.T., Xia, W., Rahmati, T., et al., The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J Biol Chem, 2000. 275(5):3173–3178.

    PubMed  CAS  Google Scholar 

  174. Takashima, A., Murayama, M., Murayama, O., et al., Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci U S A, 1998. 95(16):9637–9641.

    PubMed  CAS  Google Scholar 

  175. Buxbaum, J.D., Choi, E.K., Luo, Y., et al., Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med, 1998. 4(10):1177–1181.

    PubMed  CAS  Google Scholar 

  176. Shinozaki, K., Maruyama, K., Kume, H., et al., The presenilin 2 loop domain interacts with the mu-calpain C-terminal region. Int J Mol Med, 1998. 1(5): 797–799.

    PubMed  CAS  Google Scholar 

  177. Drouet, B., Pincon-Raymond, M., Chambaz, J., and Pillot, T., Molecular basis of Alzheimer’s disease. Cell Mol Life Sci, 2000. 57(5):705–715.

    PubMed  CAS  Google Scholar 

  178. Wolozin, B., Alexander, P., and Palacino, J., Regulation of apoptosis by presenilin 1. Neurobiol Aging, 1998. 19(1 Suppl): S23–27.

    PubMed  CAS  Google Scholar 

  179. Guo, Q., Fu, W., Xie, J., et al., Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer’s disease. Nat Med, 1998.4(8):957–962.

    PubMed  CAS  Google Scholar 

  180. Bertram, L., Blacker, D., Mullin, K., et al., Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science, 2000. 290(5500):2302–2303.

    PubMed  CAS  Google Scholar 

  181. Myers, A., Holmans, P., Marshall, H., et al. Susceptibility locus for Alzheimer’s disease on chromosome 10. Science, 2000. 290(5500):2304–2305.

    PubMed  CAS  Google Scholar 

  182. Wavrant-DeVrieze, F., Lambert, J.C., Stas, L., et al., Association between coding variability in the LRP gene and the risk of late-onset Alzheimer’s disease. Hum Genet, 1999. 104(5):432–434.

    PubMed  CAS  Google Scholar 

  183. Ertekin-Taner, N., Graff-Radford, N., Younkin, L.H., et al., Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science, 2000. 290(5500):2303–2304.

    PubMed  CAS  Google Scholar 

  184. Olson, J.M., Goddard, K.A., and Dudek, D.M., The amyloid precursor protein locus and very-late-onset Alzheimer’s disease. Am J Hum Genet, 2001. 69(4):895–899.

    PubMed  CAS  Google Scholar 

  185. Saunders, A.M., Strittmatter, W.J., Schmechel, D., et al., Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 1993. 43(8):1467–1472.

    PubMed  CAS  Google Scholar 

  186. Rocchi, A., Pellegrini, S., Siciliano, G., and Murri, L., Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull, 2003. 61(1):1–24.

    PubMed  CAS  Google Scholar 

  187. Marques, M.A. and Crutcher, K.A., Apolipoprotein E-related neurotoxicity as a therapeutic target for Alzheimer’s disease. J Mol Neurosci, 2003. 20(3): 327–337.

    PubMed  CAS  Google Scholar 

  188. Ramassamy, C., Krzywkowski, P., Averill, D., et al., Impact of apoE deficiency on oxidative insults and antioxidant levels in the brain. Brain Res Mol Brain Res, 2001. 86(1–2):76–83.

    PubMed  CAS  Google Scholar 

  189. Lee, Y., Aono, M., Laskowitz, D., et al., Apolipoprotein E protects against oxidative stress in mixed neuronal-glial cell cultures by reducing glutamate toxicity. Neurochem Int, 2004. 44(2):107–118.

    PubMed  CAS  Google Scholar 

  190. Ramassamy, C., Averill, D., Beffert, U., et al.., Oxidative insults are associated with apolipoprotein E genotype in Alzheimer’s disease brain. Neurobiol Dis, 2000. 7(1):23–37.

    PubMed  CAS  Google Scholar 

  191. Beffert, U. and Poirier, J., ApoE associated with lipid has a reduced capacity to inhibit beta-amyloid fibril formation. Neuroreport, 1998. 9(14):3321–3323.

    PubMed  CAS  Google Scholar 

  192. Hu, J., LaDu, M.J., and Van Eldik, L.J., Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J Neurochem, 1998. 71(4): 1626–1634.

    Article  PubMed  CAS  Google Scholar 

  193. Mayeux, R., Saunders, A.M., Shea, S., et al., Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease: Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med, 1998. 338(8):506–511.

    PubMed  CAS  Google Scholar 

  194. St George-Hyslop, P., McLachlan, D.C., Tsuda, T., et al., Alzheimer’s disease and possible gene interaction. Science, 1994. 263(5146):537.

    PubMed  CAS  Google Scholar 

  195. Schupf, N., Kapell, D., Lee, J.H., et al., Onset of dementia is associated with apolipoprotein E epsilon4 in Down’s syndrome. Ann Neurol, 1996. 40(5):799–801.

    PubMed  CAS  Google Scholar 

  196. Kalaria, R.N., Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis, 2002. 13(Suppl 2):48–52.

    PubMed  CAS  Google Scholar 

  197. de Figueiredo, R.J., Oten, R., Su, J., and Cotman, C.W., Amyloid deposition in cerebrovascular angiopathy. Ann N Y Acad Sci, 1997. 826:463–471.

    Google Scholar 

  198. Villemagne, V.L., Rowe, C.C., Macfarlane, S., et al. Imaginem Oblivionis: The prospects of neuroimaging for early detection of Alzheimer’s disease. J Clin Neurosci, 2005. 12:221–230.

    PubMed  Google Scholar 

  199. Jordan, J., Galindo, M.F., Miller, R.J., et al., Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J Neurosci, 1998. 18(1):195–204.

    PubMed  CAS  Google Scholar 

  200. Moir, R.D., Atwood, C.S., Romano, D.M., et al., Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations. Biochemistry, 1999. 38(14): 4595–4603.

    PubMed  CAS  Google Scholar 

  201. Games, D., Adams, D., Alessandrini, R., et al.., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 1995. 373(6514):523–527.

    PubMed  CAS  Google Scholar 

  202. Masliah, E., Sisk, A., Mallory, M., Mucke, L., et al., Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci, 1996. 16(18):5795–5811.

    PubMed  CAS  Google Scholar 

  203. Hsiao, K., Chapman, P., Nilsen, S., et al., Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 1996. 274(5284):99–102.

    PubMed  CAS  Google Scholar 

  204. Irizarry, M.C., McNamara, M., Fedorchak, K., et al., APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol, 1997. 56(9):965–973.

    PubMed  CAS  Google Scholar 

  205. Irizarry, M.C., Soriano, F., McNamara, M., et al., Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci, 1997. 17(18):7053–7059.

    PubMed  CAS  Google Scholar 

  206. Poorkaj, P., Bird, T.D., Wijsman, E., et al., Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol, 1998. 43(6):815–825.

    PubMed  CAS  Google Scholar 

  207. Hutton, M., Lendon, C.L., Rizzu, P., et al., Association of missense and 5-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998. 393(6686):702–705.

    PubMed  CAS  Google Scholar 

  208. Spillantini, M.G., Bird, T.D., and Ghetti, B., Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol, 1998. 8(2):387–402.

    Article  PubMed  CAS  Google Scholar 

  209. Spillantini, M.G. and Goedert, M., Tau protein pathology in neurodegenerative diseases. Trends Neurosci, 1998. 21(10):428–433.

    PubMed  CAS  Google Scholar 

  210. Hardy, J., Duff, K., Hardy, K.G., et al., Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau.Nat Neurosci, 1998. 1(5):355–358.

    PubMed  CAS  Google Scholar 

  211. Rapoport, M., Dawson, H.N., Binder, L.I., et al., Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A, 2002. 99(9):6364–6369.

    PubMed  CAS  Google Scholar 

  212. Terry, R.D., Masliah, E., and Hansen, L.A., Structural basis of the cognitive alterations in Alzheimer’s disease, in Alzheimer’s disease. R.D. Terry, R. Katzman, and K.L. Bick, Editors. 1994, Raven Press: New York.

    Google Scholar 

  213. Wisniewski, K.E., Dalton, A.J., McLachlan, C., et al.., Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology, 1985. 35(7): 957–961.

    PubMed  CAS  Google Scholar 

  214. Lippa, C.F., Nee, L.E., Mori, H., and St George-Hyslop, P., Abeta-42 deposition precedes other changes in PS-1 Alzheimer’s disease. Lancet, 1998. 352(9134):1117–1118.

    PubMed  CAS  Google Scholar 

  215. Lewis, J., Dickson, D.W., Lin, W.L., et al., Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and AP. Science, 2001. 293(5534):1487–1491.

    PubMed  CAS  Google Scholar 

  216. Bales, K.R., Verina, T., Dodel, R.C., et al., Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet, 1997. 17(3): 263–264.

    PubMed  CAS  Google Scholar 

  217. Roher, A.E., Chaney, M.O., Kuo, Y.M., et al., Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem, 1996. 271(34):20631–20635.

    PubMed  CAS  Google Scholar 

  218. Walsh, D.M., Klyubin, I., Fadeeva, J.V., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002. 416(6880):535–539.

    PubMed  CAS  Google Scholar 

  219. Harper, J.D., Wong, S.S., Lieber, C.M., and Lansbury, P.T., Jr., Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry, 1999. 38(28):8972–8980.

    PubMed  CAS  Google Scholar 

  220. Pike, C.J., Burdick, D., Walencewicz, A.J., et al., Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci, 1993. 13(4):1676–1687.

    PubMed  CAS  Google Scholar 

  221. Lorenzo, A. and Yankner, B.A., Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A, 1994. 91(25):12243–12247.

    PubMed  CAS  Google Scholar 

  222. Curtain, C.C., Ali, F., Volitakis, I., et al.., Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem, 2001. 276(23):20466–20473.

    PubMed  CAS  Google Scholar 

  223. Bush, A.I. and Goldstein, L.E., Specific metalcatalysed protein oxidation reactions in chronic degenerative disorders of ageing: focus on Alzheimer’s disease and age-related cataracts. Novartis Found Symp, 2001. 235:26–38; discussion 38-43.

    Article  PubMed  CAS  Google Scholar 

  224. Cuajungco, M.P., Goldstein, L.E., Nunomura, A., et al., Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem, 2000. 275(26):19439–19442.

    PubMed  CAS  Google Scholar 

  225. Lambert, M.P., Barlow, A.K., Chromy, B.A., et al., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A, 1998. 95(11):6448–6453.

    PubMed  CAS  Google Scholar 

  226. Hartley, D.M., Walsh, D.M., Ye, C.P., et al., Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci, 1999. 19(20):8876–8884.

    PubMed  CAS  Google Scholar 

  227. Hsia, A.Y., Masliah, E., McConlogue, L., et al., Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A, 1999. 96(6):3228–3233.

    PubMed  CAS  Google Scholar 

  228. Mucke, L., Masliah, E., Yu, G.Q., et al., High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci, 2000. 20(11):4050–4058.

    PubMed  CAS  Google Scholar 

  229. Reiter, R.J., Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J, 1995. 9(7):526–533.

    Google Scholar 

  230. Tomidokoro, Y., Ishiguro, K., Harigaya, Y., et al., Abeta amyloidosis induces the initial stage of tau accumulation in APP(Sw) mice. Neurosci Lett, 2001. 299(3):169–172.

    PubMed  CAS  Google Scholar 

  231. Zheng, W.H., Bastianetto, S., Mennicken, F., et al., Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience, 2002. 115(1):201–211.

    PubMed  CAS  Google Scholar 

  232. Parihar, M.S. and Hemnani, T., Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci, 2004. 11(5):456–467.

    PubMed  CAS  Google Scholar 

  233. Vajda, F.J., Neuroprotection and neurodegenerative disease. J Clin Neurosci, 2002. 9(1):4–8.

    PubMed  Google Scholar 

  234. Saez, T.E., Pehar, M., Vargas, M., et al., Astrocytic nitric oxide triggers tau hyperphosphorylation in hippocampal neurons. In Vivo, 2004. 18(3):275–280.

    CAS  Google Scholar 

  235. Multhaup, G., Ruppert, T., Schlicksupp, A., et al., Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol, 1997. 54(5):533–539.

    PubMed  CAS  Google Scholar 

  236. Perry, G., Taddeo, M.A., Nunomura, A., et al., Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comp Biochem Physiol C Toxicol Pharmacol, 2002. 133(4):507–513.

    PubMed  Google Scholar 

  237. Prasad, K.N., Hovland, A.R., Cole, W.C., et al., Multiple antioxidants in the prevention and treatment of Alzheimer’s disease: analysis of biologic rationale. Clin Neuropharmacol, 2000. 23(1):2–13.

    PubMed  CAS  Google Scholar 

  238. Schippling, S., Kontush, A., Arlt, S., et al., Increased lipoprotein oxidation in Alzheimer’s disease. Free Radic Biol Med, 2000. 28(3):351–360.

    PubMed  CAS  Google Scholar 

  239. Lyras, L., Cairns, N.J., Jenner, A., et al., An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem, 1997. 68(5):2061–2069.

    Article  PubMed  CAS  Google Scholar 

  240. Smith, C.D., Carney, J.M., Starke-Reed, P.E., et al., Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A, 1991. 88(23):10540–10543.

    PubMed  CAS  Google Scholar 

  241. Smith, M.A., Sayre, L.M., Vitek, M.P., et al., Early AGEing and Alzheimer’s. Nature, 1995. 374(6520):316.

    PubMed  CAS  Google Scholar 

  242. Montine, K.S., Olson, S.J., Amarnath, V., et al., Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol, 1997. 150(2):437–443.

    PubMed  CAS  Google Scholar 

  243. Chang, J.Y., Chavis, J.A., Liu, L.Z., and Drew, P.D., Cholesterol oxides induce programmed cell death in microglial cells. Biochem Biophys Res Commun, 1998. 249(3):817–821.

    PubMed  CAS  Google Scholar 

  244. Bernheimer, A.W., Robinson, W.G., Linder, R., et al., Toxicity of enzymically-oxidized low-density lipoprotein. Biochem Biophys Res Commun, 1987. 148(1):260–266.

    PubMed  CAS  Google Scholar 

  245. Allen, R.G. and Tresini, M., Oxidative stress and gene regulation. Free Radic Biol Med, 2000. 28(3): 463–499.

    PubMed  CAS  Google Scholar 

  246. Dizdaroglu, M., Oxidative damage to DNA in mammalian chromatin. Mutat Res, 1992. 275(3–6): 331–342.

    PubMed  CAS  Google Scholar 

  247. Mattson, M.P., Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol, 2000. 1(2):120–129.

    PubMed  CAS  Google Scholar 

  248. Mark, R.J., Fuson, K.S., and May, P.C., Characterization of 8-epiprostaglandin F2alpha as a marker of amyloid beta-peptide-induced oxidative damage. J Neurochem, 1999. 72(3):1146–1153.

    PubMed  CAS  Google Scholar 

  249. Lovell, M.A., Ehmann, W.D., Butler, S.M., and Markesbery, W.R., Elevated thiobarbituric acidreactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology, 1995. 45(8):1594–1601.

    PubMed  CAS  Google Scholar 

  250. Good, P.F., Werner, P., Hsu, A., et al., Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol, 1996. 149(1):21–28.

    PubMed  CAS  Google Scholar 

  251. Smith, M.A., Perry, G., Richey, P.L., et al., Oxidative damage in Alzheimer’s. Nature, 1996. 382(6587):120–121.

    PubMed  CAS  Google Scholar 

  252. Love, S., Barber, R., and Wilcock, G.K., Apoptosis and expression of DNA repair proteins in ischaemic brain injury in man. Neuroreport, 1998. 9(6):955–959.

    PubMed  CAS  Google Scholar 

  253. Mecocci, P., MacGarvey, U., and Beal, M.F., Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol, 1994. 36(5):747–751.

    PubMed  CAS  Google Scholar 

  254. Selley, M.L., Close, D.R., and Stern, S.E., The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol Aging, 2002. 23(3): 383–388.

    PubMed  CAS  Google Scholar 

  255. Butterfield, D.A., Castegna, A., Lauderback, C.M., and Drake, J., Evidence that amyloid beta-peptideinduced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging, 2002. 23(5):655–664.

    PubMed  Google Scholar 

  256. Arlt, S., Beisiegel, U., and Kontush, A., Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr Opin Lipidol, 2002. 13(3):289–294.

    PubMed  CAS  Google Scholar 

  257. Keller, J.N., Pang, Z., Geddes, J.W., et al., Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem, 1997. 69(1):273–284.

    Article  PubMed  CAS  Google Scholar 

  258. Mark, R.J., Hensley, K., Butterfield, D.A., and Mattson, M.P., Amyloid beta-peptide impairs ionmotive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci, 1995. 15(9):6239–6249.

    PubMed  CAS  Google Scholar 

  259. Tamagno, E., Robino, G., Obbili, A., et al., H2O2 and 4-hydroxynonenal mediate amyloid betainduced neuronal apoptosis by activating JNKs and p38MAPK. Exp Neurol, 2003. 180(2):144–155.

    PubMed  CAS  Google Scholar 

  260. Lewen, A., Matz, P., and Chan, P.H., Free radical pathways in CNS injury. J Neurotrauma, 2000. 17(10):871–890.

    PubMed  CAS  Google Scholar 

  261. Suzuki, Y.J., Forman, H.J., and Sevanian, A., Oxidants as stimulators of signal transduction. Free Radic Biol Med, 1997. 22(1–2):269–285.

    PubMed  CAS  Google Scholar 

  262. Neill, S., Desikan, R., and Hancock, J., Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002. 5(5):388–395.

    PubMed  CAS  Google Scholar 

  263. Ermak, G. and Davies, K.J., Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol, 2002. 38(10):713–721.

    PubMed  CAS  Google Scholar 

  264. LaFerla, F.M., Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci, 2002. 3(11):862–872.

    PubMed  CAS  Google Scholar 

  265. Gibson, G.E., Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer’s disease. Free Radic Biol Med, 2002. 32(11):1061–1070.

    PubMed  CAS  Google Scholar 

  266. Mattson, M.and Chan, S.L., Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 2003. 34(4–5):385–397.

    PubMed  CAS  Google Scholar 

  267. Zemlan, F.P., Thienhaus, O.J., and Bosmann, H.B., Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res, 1989. 476(1):160–162.

    PubMed  CAS  Google Scholar 

  268. Pappolla, M.A., Omar, R.A., Kim, K.S., and Robakis, N.K., Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol, 1992. 140(3):621–628.

    PubMed  CAS  Google Scholar 

  269. Gabbita, S.P., Lovell, M.A., and Markesbery, W.R., Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem, 1998. 71(5): 2034–2040.

    Article  PubMed  CAS  Google Scholar 

  270. Yamamoto, K., Ishikawa, T., Sakabe, T., et al., The hydroxyl radical scavenger Nicaraven inhibits glutamate release after spinal injury in rats. Neuroreport, 1998. 9(7):1655–1659.

    PubMed  CAS  Google Scholar 

  271. Law, A., Gauthier, S., and Quirion, R., Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Brain Res Rev, 2001. 35(1):73–96.

    PubMed  CAS  Google Scholar 

  272. Parks, J.K., Smith, T.S., Trimmer, P.A., et al., Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxidesynthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem, 2001. 76(4):1050–1056.

    PubMed  CAS  Google Scholar 

  273. Blanchard, B.J., Chen, A., Rozeboom, L.M., et al., Efficient reversal of Alzheimer’s disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A, 2004.

    Google Scholar 

  274. Luth, H.J., Holzer, M., Gartner, U., et al., Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res, 2001. 913(1):57–67.

    PubMed  CAS  Google Scholar 

  275. Su, J.H., Deng, G., and Cotman, C.W., Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer’s disease brain. Brain Res, 1997. 774(1–2):193–199.

    PubMed  CAS  Google Scholar 

  276. Gu, Z., Kaul, M., Yan, B., et al., S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002. 297(5584): 1186–1190.

    PubMed  CAS  Google Scholar 

  277. Yong, V.W., Power, C., Forsyth, P., and Edwards, D.R., Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci, 2001. 2(7):502–511.

    PubMed  CAS  Google Scholar 

  278. Meda, L., Cassatella, M.A., Szendrei, G.I., et al., Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature, 1995. 374 (6523):647–650.

    PubMed  CAS  Google Scholar 

  279. El Khoury, J., Hickman, S.E., Thomas, C.A., et al., Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature, 1996. 382(6593): 716–719.

    PubMed  Google Scholar 

  280. Griffin, W.S., Stanley, L.C., Ling, C., et al., Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer’s disease. Proc Natl Acad Sci U S A, 1989. 86(19):7611–7615.

    PubMed  CAS  Google Scholar 

  281. Rogers, J., Schultz, J., Brachova, L., et al., Complement activation and beta-amyloid-mediated neurotoxicity in Alzheimer’s disease. Res Immunol, 1992. 143(6):624–630.

    PubMed  CAS  Google Scholar 

  282. Brown, G.C. and Bal-Price, A., Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol, 2003. 27(3): 325–355.

    PubMed  CAS  Google Scholar 

  283. Colton, C.A., Snell, J., Chernyshev, O., and Gilbert, D.L., Induction of superoxide anion and nitric oxide production in cultured microglia. Ann N Y Acad Sci, 1994. 738:54–63.

    Article  PubMed  CAS  Google Scholar 

  284. Harman, D., A hypothesis on the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci, 1996. 786: 152–168.

    PubMed  CAS  Google Scholar 

  285. Byrne, E., Does mitochondrial respiratory chain dysfunction have a role in common neurodegenerative disorders? J Clin Neurosci, 2002. 9(5): 497–501.

    PubMed  CAS  Google Scholar 

  286. Keller, J.N., Guo, Q., Holtsberg, F.W., et al., Increased sensitivity to mitochondrial toxininduced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci, 1998. 18(12):4439–4450.

    PubMed  CAS  Google Scholar 

  287. Kruman, II and Mattson, M.P., Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem, 1999. 72(2):529–540.

    PubMed  CAS  Google Scholar 

  288. Cadenas, E. and Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med, 2000.29(3–4):222–230.

    PubMed  CAS  Google Scholar 

  289. Parker, W.D., Jr., Parks, J., Filley, C.M., and Kleinschmidt-DeMasters, B.K., Electron transport chain defects in Alzheimer’s disease brain. Neurology, 1994. 44(6):1090–1096.

    PubMed  Google Scholar 

  290. Swerdlow, R.H., Parks, J.K., Cassarino, D.S., et al., Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology, 1997. 49(4):918–925.

    Google Scholar 

  291. Corral-Debrinski, M., Horton, T., Lott, M.T., et al., Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet, 1992. 2(4):324–329.

    PubMed  CAS  Google Scholar 

  292. Wallace, D.C., Lott, M.T., and Brown, M.D., Mitochondrial defects in neurodegenerative diseases and aging, in Mitochondria and Free radicals in Neurodegenerative Diseases, M.F. Beal, N. Howell and I. Bodis-Walker, Editors. 1997, Wiley-Liss: New York. 283–307.

    Google Scholar 

  293. Price, D.L., Tanzi, R.E., Borchelt, D.R., and Sisodia, S.S., Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet, 1998. 32: 461–493.

    PubMed  CAS  Google Scholar 

  294. Bush, A.I., Metals and neuroscience. Curr Opin Chem Biol, 2000. 4(2):184–191.

    PubMed  CAS  Google Scholar 

  295. Huang, X., Moir, R.D., Tanzi, R.E., et al., Redoxactive metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci, 2004. 1012: 153–163.

    PubMed  CAS  Google Scholar 

  296. Huang, X., Cuajungco, M.P., Atwood, C.S., et al., Alzheimer’s disease, beta-amyloid protein and zinc. J Nutr, 2000. 130(5S Suppl): 1488S–1492S.

    PubMed  CAS  Google Scholar 

  297. Atwood, C.S., Huang, X., Moir, R.D., et al.., Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst, 1999. 36:309–364.

    PubMed  CAS  Google Scholar 

  298. Smith, M.A., Harris, P.L., Sayre, L.M., and Perry, G., Iron accumulation in Alzheimer’s disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A, 1997. 94(18):9866–9868.

    PubMed  CAS  Google Scholar 

  299. Martins, R.N., Harper, C.G., Stokes, G.B., and Masters, C.L., Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress. J Neurochem, 1986. 46(4):1042–1045.

    PubMed  CAS  Google Scholar 

  300. Sayre, L.M., Perry, G., Harris, P.L., et al., In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem, 2000. 74(1):270–279.

    PubMed  CAS  Google Scholar 

  301. Bush, A.I., Masters, C.L., and Tanzi, R., E., Copper, beta-amyloid, and Alzheimer’s disease: tapping a sensitive connection. Proc Natl Acad Sci U S A, 2003. 100(20):11193–11194.

    PubMed  CAS  Google Scholar 

  302. Atwood, C.S., Moir, R.D., Huang, X., et al., Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem, 1998. 273(21):12817–12826.

    PubMed  CAS  Google Scholar 

  303. Atwood, C.S., Huang, X., Khatri, A., et al., Copper catalyzed oxidation of Alzheimer Aβ. Cell Mol Biol, 2000. 46(4):777–783.

    PubMed  CAS  Google Scholar 

  304. Huang, X., Atwood, C.S., Hartshorn, M.A., et al., The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 1999. 38(24):7609–7616.

    PubMed  CAS  Google Scholar 

  305. Huang, X., Cuajungco, M.P., Atwood, C.S., et al., Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem, 1999. 274(52):37111–37116.

    PubMed  CAS  Google Scholar 

  306. Opazo, C., Huang, X., Cherny, R.A., et al., Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem, 2002. 277(43):40302–40308.

    PubMed  CAS  Google Scholar 

  307. Behl, C., Davis, J.B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 1994. 77(6):817–827.

    PubMed  CAS  Google Scholar 

  308. Morita, A., Kimura, M., and Itokawa, Y., The effect of aging on the mineral status of female mice. Biol Trace Elem Res, 1994. 42(2):165–177.

    PubMed  CAS  Google Scholar 

  309. Takahashi, S., Takahashi, I., Sato, H., et al., Agerelated changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res, 2001. 80(2):145–158.

    PubMed  CAS  Google Scholar 

  310. Lovell, M.A., Robertson, J.D., Teesdale, W.J., et al., Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci, 1998. 158(1):47–52.

    PubMed  CAS  Google Scholar 

  311. Lee, J.Y., Cole, T.B., Palmiter, R.D., et al., Contribution by synaptic zinc to the genderdisparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci U S A, 2002. 99(11):7705–7710.

    PubMed  CAS  Google Scholar 

  312. Yoshiike, Y., Tanemura, K., Murayama, O., et al., New insights on how metals disrupt amyloid betaaggregation and their effects on amyloid-beta cytotoxicity. J Biol Chem, 2001. 276(34):32293–32299.

    PubMed  CAS  Google Scholar 

  313. Huang, X., Atwood, C.S., Moir, R.D., et al., Zincinduced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors. J Biol Chem, 1997. 272(42):26464–26470.

    PubMed  CAS  Google Scholar 

  314. Terry, R.D., The pathogenesis of Alzheimer’s disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol, 1996. 55(10):1023–1025.

    PubMed  CAS  Google Scholar 

  315. Atwood, C.S., Obrenovich, M.E., Liu, T., et al., Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. Brain Res Brain Res Rev, 2003. 43(1):1–16.

    PubMed  CAS  Google Scholar 

  316. Multhaup, G., Hesse, L., Borchardt, T., et al., Autoxidation of amyloid precursor protein and formation of reactive oxygen species. Adv Exp Med Biol, 1999. 448:183–192.

    PubMed  CAS  Google Scholar 

  317. Butterfield, D.A., Drake, J., Pocernich, C., and Castegna, A., Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med, 2001. 7(12):548–554.

    PubMed  CAS  Google Scholar 

  318. Arispe, N., Rojas, E., and Pollard, H.B., Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A, 1993. 90(2):567–571.

    PubMed  CAS  Google Scholar 

  319. Mattson, M.P., Tomaselli, K.J., and Rydel, R.E., Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res, 1993. 621(1): 35–49.

    PubMed  CAS  Google Scholar 

  320. Curtain, C.C., Ali, F.E., Smith, D.G., et al., Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-beta peptide with membrane lipid. J Biol Chem, 2003. 278(5):2977–2982.

    PubMed  CAS  Google Scholar 

  321. Cherny, R.A., Legg, J.T., McLean, C.A., et al., Aqueous dissolution of Alzheimer’s disease Aβ amyloid deposits by biometal depletion. J Biol Chem, 1999. 274(33):23223–23228.

    PubMed  CAS  Google Scholar 

  322. Lau, T.L., Barnham, K.J., Curtain, C.C., et al., Magnetic resonance studies of β-amyloid peptides. Aust J Chem, 2003. 56:349–356.

    CAS  Google Scholar 

  323. Barnham, K.J., Ciccotosto, G.D., Tickler, A.K., et al., Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem, 2003. 278(44): 42959–42965.

    PubMed  CAS  Google Scholar 

  324. Atwood, C.S., Scarpa, R.C., Huang, X., et al., Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem, 2000. 75(3):1219–1233.

    PubMed  CAS  Google Scholar 

  325. Naslund, J., Schierhorn, A., Hellman, U., et al., Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer’s disease and normal aging. Proc Natl Acad Sci U S A, 1994. 91(18): 8378–8382.

    PubMed  CAS  Google Scholar 

  326. Kuo, Y.M., Kokjohn, T.A., Beach, T.G., et al., Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem, 2001. 276(16):12991–12998.

    PubMed  CAS  Google Scholar 

  327. Palmblad, M., Westlind-Danielsson, A., and Bergquist, J., Oxidation of methionine 35 attenuates formation of amyloid beta-peptide 1-40 oligomers. J Biol Chem, 2002. 277(22):19506–19510.

    PubMed  CAS  Google Scholar 

  328. Hou, L., Kang, I., Marchant, R.E., and Zagorski, M.G., Methionine 35 oxidation reduces fibril assembly of the amyloid abeta-(1-42) peptide of Alzheimer’s disease. J Biol Chem, 2002. 277(43): 40173–40176.

    PubMed  CAS  Google Scholar 

  329. Dong, J., Atwood, C.S., Anderson, V.E., et al., Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry, 2003. 42(10):2768–2773.

    PubMed  CAS  Google Scholar 

  330. Selkoe, D.J., The early diagnosis of Alzheimer’s disease., in The Pathophysiology of Alzheimer’s Disease. L.F.M. Scinto and K.R. Daffner, Editors. 2000, Humana: Totowa, NJ. 83–104.

    Google Scholar 

  331. Barrow, C.J., Advances in the development of Abeta-related therapeutic strategies for Alzheimer’s disease. Drug News Perspect, 2002. 15(2):102–109.

    PubMed  CAS  Google Scholar 

  332. Auld, D.S., Kornecook, T.J., Bastianetto, S., and Quirion, R., Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol, 2002. 68(3):209–245.

    PubMed  CAS  Google Scholar 

  333. Bowen, D.M., Palmer, A.M., Frances, P.T., et al., Classical neurotransmitters in Alzheimer’s disease, in Aging and the Brain. R.D. Terry, Editor. 1988, Raven Press: New York. 115–128.

    Google Scholar 

  334. Emilien, G., Beyreuther, K., Masters, C.L., and Maloteaux, J.M., Prospects for pharmacological intervention in Alzheimer’s disease. Arch Neurol, 2000. 57(4):454–459.

    PubMed  CAS  Google Scholar 

  335. Mobius, H.J., Memantine: update on the current evidence. Int J Geriatr Psychiatry, 2003. 18(Suppl 1):S47–54.

    PubMed  Google Scholar 

  336. Winblad, B. and Jelic, V., Treating the full spectrum of dementia with memantine. Int J Geriatr Psychiatry, 2003. 18(Suppl 1):S41–46.

    PubMed  Google Scholar 

  337. Rogawski, M.A. and Wenk, G.L., The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev, 2003. 9:275–308.

    Article  PubMed  CAS  Google Scholar 

  338. Reisberg, B., Doody, R., Stoffler, A., et al., Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med, 2003. 348(14):1333–1341.

    PubMed  CAS  Google Scholar 

  339. Moosmann, B. and Behl, C., Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs, 2002. 11(10):1407–1435.

    PubMed  CAS  Google Scholar 

  340. Sano, M., Ernesto, C., Thomas, R.G., et al., A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med, 1997. 336(17):1216–1222.

    CAS  Google Scholar 

  341. Bano, S. and Parihar, M.S., Reduction of lipid peroxidation in different brain regions by a combination of alpha-tocopherol and ascorbic acid. J Neural Transm, 1997. 104(11-12):1277–1286.

    PubMed  CAS  Google Scholar 

  342. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med, 1993. 328(3):176–183.

    Google Scholar 

  343. Spina, M.B., Squinto, S.P., Miller, J., et al., Brainderived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem, 1992. 59(1):99–106.

    PubMed  CAS  Google Scholar 

  344. Parihar, M.S. and Hemnani, T., Experimental excitotoxicity provokes oxidative damage in mice brain and attenuation by extract of Asparagus racemosus. J Neural Transm, 2004. 111(1):1–12.

    PubMed  CAS  Google Scholar 

  345. Parihar, M.S. and Hemnani, T., Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J Biosci, 2003. 28(1):121–128.

    Article  PubMed  CAS  Google Scholar 

  346. Beyer, R.E., An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol, 1992. 70(6):390–403.

    Article  PubMed  CAS  Google Scholar 

  347. Hemmer, W. and Wallimann, T., Functional aspects of creatine kinase in brain. Dev Neurosci, 1993. 15(3–5):249–260.

    PubMed  CAS  Google Scholar 

  348. Mendoza-Ramirez, J.L., Beltran-Parrazal, L., Verdugo-Diaz, L., et al., Delay in manifestations of aging by grafting NGF cultured chromaffin cells in adulthood. Neurobiol Aging, 1995. 16(6):907–916.

    PubMed  CAS  Google Scholar 

  349. Behl, C. and Holsboer, F., The female sex hormone oestrogen as a neuroprotectant. Trends Pharmacol Sci, 1999. 20(11):441–444.

    Google Scholar 

  350. Xu, H., Gouras, G.K., Greenfield, J.P., et al., Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med, 1998. 4(4): 447–451.

    PubMed  CAS  Google Scholar 

  351. LeVine III, H., Challenges of targeting Aβ fibrillogenesis and other protein folding disorders. Amyloid, 2003. 10:133–135.

    PubMed  Google Scholar 

  352. Conway, K.A., Baxter, E.W., Felsenstein, K.M., and Reitz, A.B., Emerging beta-amyloid therapies for the treatment of Alzheimer’s disease. Curr Pharm Des, 2003. 9(6):427–447.

    PubMed  CAS  Google Scholar 

  353. Xia, W., Amyloid inhibitors and Alzheimer’s disease. Curr Opin Investig Drugs, 2003. 4(1):55–59.

    PubMed  CAS  Google Scholar 

  354. Lahiri, D.K., Farlow, M.R., Sambamurti, K., et al., A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets, 2003. 4(2):97–112.

    PubMed  CAS  Google Scholar 

  355. Doraiswamy, P.M., Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs, 2002. 16(12):811–824.

    PubMed  CAS  Google Scholar 

  356. Maiorini, A.F., Gaunt, M.J., Jacobsen, T.M., et al., Potential novel targets for Alzheimer pharmacotherapy: I. Secretases. J Clin Pharm Ther, 2002. 27(3):169–183.

    PubMed  CAS  Google Scholar 

  357. Jhee, S., Shiovitz, T., Crawford, A.W., and Cutler, N.R., Beta-amyloid therapies in Alzheimer’s disease. Expert Opin Investig Drugs, 2001. 10(4): 593–605.

    PubMed  CAS  Google Scholar 

  358. Cutler, N.R. and Sramek, J.J., Review of the next generation of Alzheimer’s disease therapeutics: challenges for drug development. Prog Neuropsychopharmacol Biol Psychiatry, 2001. 25(1): 27–57.

    PubMed  CAS  Google Scholar 

  359. Haass, C. and De Strooper, B., The presenilins in Alzheimer’s disease-proteolysis holds the key. Science, 1999. 286(5441):916–919.

    PubMed  CAS  Google Scholar 

  360. Wong, G.T., Manfra, D., Poulet, F.M., et al., Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem, 2004. 279(13): 12876–12882.

    PubMed  CAS  Google Scholar 

  361. King, G.D., Cherian, K., and Turner, R.S., X11alpha impairs gamma-but not beta-cleavage of amyloid precursor protein. J Neurochem, 2004. 88(4):971–982.

    Article  PubMed  CAS  Google Scholar 

  362. Lanz, T.A., Hosley, J.D., Adams, W.J., and Merchant, K.M., Studies of Abeta pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY-411575). J Pharmacol Exp Ther, 2004. 309(1):49–55.

    PubMed  CAS  Google Scholar 

  363. Kornilova, A.Y., Das, C., and Wolfe, M.S., Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications. J Biol Chem, 2003. 278(19):16470–16473.

    PubMed  CAS  Google Scholar 

  364. Lanz, T.A., Himes, C.S., Pallante, G., et al., The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther, 2003. 305(3):864–871.

    PubMed  CAS  Google Scholar 

  365. Takahashi, Y., Hayashi, I., Tominari, Y., et al.., Sulindac sulfide is a noncompetitive gammasecretase inhibitor that preferentially reduces Abeta 42 generation. J Biol Chem, 2003. 278(20):18664–18670.

    PubMed  CAS  Google Scholar 

  366. Wolfe, M.S., Therapeutic strategies for Alzheimer’s disease. Nat Rev Drug Discov, 2002. 1(11):859–866.

    PubMed  CAS  Google Scholar 

  367. Schenk, D., Amyloid-beta immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci, 2002. 3(10):824–828.

    PubMed  CAS  Google Scholar 

  368. McLaurin, J., Cecal, R., Kierstead, M.E., et al., Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med, 2002. 8(11):1263–1269.

    PubMed  CAS  Google Scholar 

  369. Hock, C., Konietzko, U., Papassotiropoulos, A., et al., Generation of antibodies specific for betaamyloid by vaccination of patients with Alzheimer’s disease. Nat Med, 2002. 8(11):1270–1275.

    PubMed  CAS  Google Scholar 

  370. Schenk, D., Barbour, R., Dunn, W., et al., Immunization with amyloid-β attenuates Alzheimerdisease-like pathology in the PDAPP mouse. Nature, 1999. 400(6740):173–177.

    PubMed  CAS  Google Scholar 

  371. Janus, C., Vaccines for Alzheimer’s disease: how close are we? CNS Drugs, 2003. 17(7):457–474.

    Google Scholar 

  372. Cherny, R.A., Atwood, C.S., Xilinas, M.E., et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 2001. 30(3):665–676.

    PubMed  CAS  Google Scholar 

  373. Weiner, H.L., Lemere, C.A., Maron, R., et al., Nasal administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol, 2000. 48(4):567–579.

    PubMed  CAS  Google Scholar 

  374. Janus, C., Pearson, J., McLaurin, J., et al., Aβ-peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 2000. 408(6815):979–982.

    PubMed  CAS  Google Scholar 

  375. Bard, F., Cannon, C., Barbour, R., et al., Peripherally administered antibodies against amyloid β peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med, 2000. 6(8):916–919.

    PubMed  CAS  Google Scholar 

  376. DeMattos, R.B., Bales, K.R., Cummins, D.J., et al., Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A, 2001. 98(15):8850–8855.

    Google Scholar 

  377. Wilcock, D.M., DiCarlo, G., Henderson, D., et al., Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci, 2003. 23(9):3745–3751.

    Google Scholar 

  378. Robinson, S.R., Bishop, G.M., Lee, H.G., and Munch, G., Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging, 2004. 25(5):609–615.

    PubMed  CAS  Google Scholar 

  379. Broytman, O. and Malter, J.S., Anti-Abeta: The good, the bad, and the unforeseen. J Neurosci Res, 2004. 75(3):301–306.

    PubMed  CAS  Google Scholar 

  380. Robinson, S.R., Bishop, G.M., and Munch, G., Alzheimer vaccine: amyloid-beta on trial. Bioessays, 2003. 25(3):283–288.

    PubMed  CAS  Google Scholar 

  381. Munch, G. and Robinson, S.R., Potential neurotoxic inflammatory responses to Abeta vaccination in humans. J Neural Transm, 2002. 109(7–8):1081–1087.

    PubMed  CAS  Google Scholar 

  382. Rogers, J., Webster, S., Lue, L.F., et al., Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging, 1996. 17(5):681–686.

    PubMed  CAS  Google Scholar 

  383. Weggen, S., Eriksen, J.L., Das, P., et al., A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 2001. 414(6860):212–216.

    PubMed  CAS  Google Scholar 

  384. Beher, D., Clarke, E.E., Wrigley, J.D., et al., Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site-evidence for an allosteric mechanism. J Biol Chem, 2004.

    Google Scholar 

  385. Lim, G.P., Yang, F., Chu, T., et al., Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging, 2001. 22(6):983–991.

    PubMed  CAS  Google Scholar 

  386. Jantzen, P.T., Connor, K.E., DiCarlo, G., et al., Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci, 2002. 22(6):2246–2254.

    PubMed  CAS  Google Scholar 

  387. Refolo, L.M., Pappolla, M.A., LaFrancois, J., et al., A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiol Dis, 2001. 8(5):890–899.

    PubMed  CAS  Google Scholar 

  388. Wolozin, B., Kellman, W., Ruosseau, P., et al., Decreased prevalence of Alzheimer’s disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol, 2000. 57(10): 1439–1443.

    PubMed  CAS  Google Scholar 

  389. Jick, H., Zornberg, G.L., Jick, S.S., et al., Statins and the risk of dementia. Lancet, 2000. 356(9242): 1627–1631.

    PubMed  CAS  Google Scholar 

  390. Sparks, D.L., Kuo, Y.M., Roher, A., et al., Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann N Y Acad Sci, 2000. 903:335–344.

    PubMed  CAS  Google Scholar 

  391. Refolo, L.M., Malester, B., LaFrancois, J., et al., Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis, 2000. 7(4):321–331.

    PubMed  CAS  Google Scholar 

  392. Fassbender, K., Simons, M., Bergmann, C., et al., Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A, 2001. 98(10):5856–5861.

    PubMed  CAS  Google Scholar 

  393. Wahrle, S., Das, P., Nyborg, A.C., et al., Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis, 2002. 9(1):11–23.

    PubMed  CAS  Google Scholar 

  394. Bush, A.I., Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging, 2002. 23(6):1031–1038.

    PubMed  CAS  Google Scholar 

  395. Padmanabhan, G., Klauss, E., and Florey, E.E., Clioquinol, in Analytical Profiles of Drug Substances. K. Florey, Editor. 1989, Academic Press: Orlando, FL. 57–90.

    Google Scholar 

  396. Ritchie, C.W., Bush, A.I., Mackinnon, A., et al., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch Neurol, 2003. 60(12):1685–1691.

    PubMed  Google Scholar 

  397. Sair, H.I., Doraiswamy, P.M., and Petrella, J.R., In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology, 2004. 46(2):93–104.

    CAS  Google Scholar 

  398. Zhang, J., Yarowsky, P., Gordon, M.N., et al., Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging. Magn Reson Med, 2004. 51(3):452–457.

    PubMed  Google Scholar 

  399. Benveniste, H., Einstein, G., Kim, K.R., et al., Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci U S A, 1999. 96(24):14079–14084.

    PubMed  CAS  Google Scholar 

  400. Rapoport, S.I., Hydrogen magnetic resonance spectroscopy in Alzheimer’s disease. Lancet Neurol, 2002. 1(2):82.

    PubMed  Google Scholar 

  401. Schuff, N., Capizzano, A.A., Du, A.T., et al., Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology, 2002. 58(6):928–935.

    PubMed  CAS  Google Scholar 

  402. Petrella, J.R., Coleman, R.E., and Doraiswamy, P.M., Neuroimaging and early diagnosis of Alzheimer’s disease: a look to the future. Radiology, 2003. 226(2):315–336.

    PubMed  Google Scholar 

  403. Phelps, M.E., PET: the merging of biology and imaging into molecular imaging. J Nucl Med, 2000. 41(4):661–681.

    PubMed  CAS  Google Scholar 

  404. Devanand, D.P., Jacobs, D.M., Tang, M.X., et al., The course of psychopathologic features in mild to moderate Alzheimer’s disease. Arch Gen Psychiatry, 1997. 54(3):257–263.

    PubMed  CAS  Google Scholar 

  405. Salmon, E., Sadzot, B., Maquet, P., et al. Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med, 1994. 35(3):391–398.

    PubMed  CAS  Google Scholar 

  406. Silverman, D.H., Cummings, J.L., Small, G., et al., Added clinical benefit of incorporating 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography into the clinical evaluation of patients with cognitive impairment. Mol Imaging Biol, 2002. 4(4):283–2893.

    PubMed  Google Scholar 

  407. Kennedy, A.M., Frackowiak, R.S., Newman, S.K., et al., Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett, 1995. 186(1):17–20.

    PubMed  CAS  Google Scholar 

  408. Small, G.W., Mazziotta, J.C., Collins, M.T., et al., Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer’s disease. JAMA, 1995. 273(12):942–947.

    PubMed  CAS  Google Scholar 

  409. Silverman, D.H., Small, G.W., Chang, C.Y., et al., Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA, 2001. 286(17):2120–2127.

    PubMed  CAS  Google Scholar 

  410. Zhuang, Z.P., Kung, M.P., Wilson, A., et al., Structure-activity relationship of imidazo[1,2-a]pyridines as ligands for detecting beta-amyloid plaques in the brain. J Med Chem, 2003. 46(2):237–243.

    PubMed  CAS  Google Scholar 

  411. Kung, M.P., Hou, C., Zhuang, Z.P., et al., IMPY: an improved thioflavin-T derivative for in vivo labeling of beta-amyloid plaques. Brain Res Bull, 2002. 956(2):202–210.

    CAS  Google Scholar 

  412. Ono, M., Kung, M.P., Hou, C., and Kung, H.F., Benzofuran derivatives as Abeta-aggregate-specific imaging agents for Alzheimer’s disease. Nucl Med Biol, 2002. 29(6):633–642.

    PubMed  CAS  Google Scholar 

  413. Ono, M., Wilson, A., Nobrega, J., et al., 11Clabeled stilbene derivatives as Abeta-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol, 2003. 30(6):565–571.

    PubMed  CAS  Google Scholar 

  414. Kung, M.P., Skovronsky, D.M., Hou, C., et al., Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. J Mol Neurosci, 2003. 20(1): 15–24.

    PubMed  CAS  Google Scholar 

  415. Kung, M.P., Zhuang, Z.P., Hou, C., et al., Characterization of radioiodinated ligand binding to amyloid beta plaques. J Mol Neurosci, 2003. 20(3): 249–254.

    PubMed  CAS  Google Scholar 

  416. Lee, C.W., Kung, M.P., Hou, C., and Kung, H.F., Dimethylamino-fluorenes: ligands for detecting beta-amyloid plaques in the brain. Nucl Med Biol, 2003. 30(6):573–580.

    PubMed  CAS  Google Scholar 

  417. Link, C.D., Johnson, C.J., Fonte, V., et al., Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging, 2001. 22(2):217–226.

    PubMed  CAS  Google Scholar 

  418. Klunk, W.E., Debnath, M.L., and Pettegrew, J.W., Development of small molecule probes for the betaamyloid protein of Alzheimer’s disease. Neurobiol Aging, 1994. 15(6):691–698.

    PubMed  CAS  Google Scholar 

  419. Bacskai, B.J., Klunk, W.E., Mathis, C.A., and Hyman, B.T., Imaging amyloid-beta deposits in vivo. J Cereb Blood Flow Metab, 2002. 22(9): 1035–1041.

    PubMed  CAS  Google Scholar 

  420. Klunk, W.E., Bacskai, B.J., Mathis, C.A., et al., Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropath Exp Neurol, 2002. 61(9):797–805.

    PubMed  CAS  Google Scholar 

  421. Kung, M.P., Hou, C., Zhuang, Z.P., et al., Radioiodinated styrylbenzene derivatives as potential SPECT imaging agents for amyloid plaque detection in Alzheimer’s disease. J Mol Neurosci, 2002. 19(1–2):7–10.

    PubMed  CAS  Google Scholar 

  422. Zhuang, Z.P., Kung, M.P., Hou, C., et al., IBOX(2-(4-dimethylaminophenyl)-6-iodobenzoxazole): a ligand for imaging amyloid plaques in the brain. Nucl Med Biol, 2001. 28(8):887–894.

    PubMed  CAS  Google Scholar 

  423. Lee, C.W., Zhuang, Z.P., Kung, M.P., et al., Isomerization of (Z,Z) to (E,E)1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene in strong base: probes for amyloid plaques in the brain. J Med Chem., 2001. 44(14):2270–2275.

    PubMed  CAS  Google Scholar 

  424. Klunk, W.E., Wang, Y., Huang, G.F., et al., The binding of 2-(4-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci, 2003. 23(6): 2086–2092.

    PubMed  CAS  Google Scholar 

  425. Klunk, W.E., Wang, Y., Huang, G.F., et al., Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci, 2001. 69(13):1471–1484.

    PubMed  CAS  Google Scholar 

  426. Bacskai, B.J., Hickey, G.A., Skoch, J., et al., Fourdimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A, 2003. 100(21):12462–12467.

    PubMed  CAS  Google Scholar 

  427. Mathis, C.A., Bacskai, B.J., Kajdasz, S.T., et al., A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett, 2002. 12(3):295–298.

    PubMed  CAS  Google Scholar 

  428. Mathis, C.A., Holt, D.P., Wang, Y., et al., Lipophilic 11C-labelled thioflavin-T analogues for imaging amyloid plaques in Alzheimer’s disease. J Label Compd Radiopharm, 2001. 44(Suppl 1):S26–S28.

    Google Scholar 

  429. Mathis, C.A., Wang, Y., Holt, D.P., et al., Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem, 2003. 46(13):2740–2754.

    PubMed  CAS  Google Scholar 

  430. Wang, Y., Klunk, W.E., Huang, G.F., et al., Synthesis and evaluation of 2-(3-iodo-4-aminophenyl)-6-hydroxybenzothiazole for in vivo quantitation of amyloid deposits in Alzheimer’s disease. J Mol Neurosci, 2002. 19(1–2):11–16.

    PubMed  Google Scholar 

  431. Wang, Y., Mathis, C.A., Huang, G.F., et al.., Effects of lipophilicity on the affinity and nonspecific binding of iodinated benzothiazole derivatives. J Mol Neurosci, 2003. 20(3):255–260.

    PubMed  Google Scholar 

  432. Helmuth, L., Long-awaited technique spots Alzheimer’s toxin. Science, 2002. 297:752–753.

    PubMed  CAS  Google Scholar 

  433. Klunk, W.E., Engler, H., Nordberg, A., et al., Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol, 2004. 55: 306–319.

    PubMed  CAS  Google Scholar 

  434. Zhuang, Z.P., Kung, M.P., Hou, C., et al., Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates. J Med Chem, 2001. 44(12):1905–1914.

    PubMed  CAS  Google Scholar 

  435. Skovronsky, D.M., Zhang, B., Kung, M.P., et al., In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A, 2000. 97(13):7609–7614.

    PubMed  CAS  Google Scholar 

  436. Kung, H.F., Lee, C.W., Zhuang, Z.P., et al. Novel stilbenes as probes for amyloid plaques. J Am Chem Soc, 2001. 123(50):12740–12741.

    PubMed  CAS  Google Scholar 

  437. Schmidt, M.L., Schuck, T., Sheridan, S., et al., The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am J Pathol, 2001. 159(3):937–943.

    PubMed  CAS  Google Scholar 

  438. Shimadzu, H., Suemoto, T., Suzuki, M., et al., A novel probe for imaging amyloid-b: Synthesis of F-18 labelled BF-108, an Acridine Orange analog. J Label Compd Radiopharm, 2003. 46:765–772.

    CAS  Google Scholar 

  439. Agdeppa, E.D., Kepe, V., Petri, A., et al., In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malononitrile. Neuroscience, 2003. 117(3):723–730.

    PubMed  CAS  Google Scholar 

  440. Agdeppa, E.D., Kepe, V., Liu, J., et al., Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci, 2001. 21(24):RC189.

    PubMed  CAS  Google Scholar 

  441. Barrio, J.R., Huang, S.C., Cole, G., et al., PET imaging of tangles and plaques in Alzheimer’s disease with a highly lipophilic probe. J Label Compd Radiopharm, 1999. 42:S194–S195.

    Google Scholar 

  442. Shoghi-Jadid, K., Small, G.W., Agdeppa, E.D., et al., Localisation of neurofibrillary tangles and βamyloid plaques in the brains of living patients with Alzheimer’s disease. Am J Ger Psychiatry, 2002. 10(1):24–35.

    Google Scholar 

  443. Bresjanac, M., Smid, L.M., Vovko, T.D., et al., Molecular-imaging probe 2-(1-[6-[(2-fluoroethyl) (methyl) amino]-2-naphthyl]ethylidene) malononitrile labels prion plaques in vitro. J Neurosci, 2003. 23(22):8029–8033.

    PubMed  CAS  Google Scholar 

  444. Agdeppa, E.D., Kepe, V., Shoghi-Jadid, K., et al., In vivo and in vitro labeling of plaques and tangles in the brain of an Alzheimer’s disease patient: a case study. J Nucl Med, 2001. 42(Suppl 1): 65P.

    Google Scholar 

  445. Small, G.W., Agdeppa, E.D., Kepe, V., et al., In vivo brain imaging of tangle burden in humans. J Mol Neurosci, 2002. 19(3):323–327.

    PubMed  CAS  Google Scholar 

  446. Lee, V.M., Related Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging, 2002. 23(6):1039–1042.

    PubMed  CAS  Google Scholar 

  447. Marshall, J.R., Stimson, E.R., Ghilardi, J.R., et al., Noninvasive imaging of peripherally injected Alzheimer’s disease type synthetic A beta amyloid in vivo. Bioconjug Chem, 2002. 13(2):276–284.

    PubMed  CAS  Google Scholar 

  448. Maggio, J.E., Stimson, E.R., Ghilardi, J.R., et al., Reversible in vitro growth of Alzheimer’s disease beta-amyloid plaques by deposition of labeled amyloid protein. Proc Natl Acad Sci U S A, 1992. 89(12):5462–5466.

    PubMed  CAS  Google Scholar 

  449. Friedland, R.P., Shi. J, Lamanna, J.C., et al., Prospects for noninvasive imaging of brain amyloid beta in Alzheimer’s disease. Ann N Y Acad Sci, 2000. 903:123–128.

    PubMed  CAS  Google Scholar 

  450. Ghilardi, J.R., Catton, M., Stimson, E.R., et al., Intra-arterial infusion of [125I]A beta 1-40 labels amyloid deposits in the aged primate brain in vivo. Neuroreport, 1996. 7(15–17):2607–2611.

    Article  PubMed  CAS  Google Scholar 

  451. Kurihara, A. and Pardridge, W.M., Abeta(1-40) peptide radiopharmaceuticals for brain amyloid imaging: (111)In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug Chem, 2000. 11(3):380–386.

    PubMed  CAS  Google Scholar 

  452. Saito, Y., Buciak, J., Yang, J., and Pardridge, W.M., Vector-mediated delivery of 125I-labeled betaamyloid peptide A beta 1-40 through the bloodbrain barrier and binding to Alzheimer’s disease amyloid of the A beta 1-40/vector complex. Proc Natl Acad Sci U S A, 1995. 92(22):10227–10231.

    PubMed  CAS  Google Scholar 

  453. Majocha, R.E., Reno, J.M., Friedland, R.P., et al., Development of a monoclonal antibody specific for β/A4 amyloid in Alzheimer’s disease brain for application to in vivo imaging of amyloid angiopathy. J Nucl Med, 1992. 33(12):2184–2189.

    PubMed  CAS  Google Scholar 

  454. Walker, L.C., Price, D.L., Voytko, M.L., and Schenk, D.B., Labelling of cerebral amyloid in vivo with a monoclonal antibody. J Neuropathol Exp Neurol, 1994. 53(4):377–383.

    PubMed  CAS  Google Scholar 

  455. Shi, J., Perry, G., Berridge, M.S., et al., Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J Nucl Med, 2002. 43(8):1044–1051.

    PubMed  CAS  Google Scholar 

  456. Knopman, D.S., DeKosky, S.T., Cummings, J.L., et al., Practice parameter: Diagnosis of dementia (an evidence based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2001. 56(9):1143–1153.

    PubMed  CAS  Google Scholar 

  457. Doody, R.S., Stevens, J.C., Beck, C., et al., Practice parameter: management of dementia (an evidencebased review)-report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2001. 56(9):1154–1166.

    PubMed  CAS  Google Scholar 

  458. Petersen, R.C., Stevens, J.C., Ganguli, M., et al., Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)-report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2001. 56(9):1133–1142.

    PubMed  CAS  Google Scholar 

  459. Silverman, D.H., Chang, C.Y., Cummings, J.L., et al., Prognostic value of regional brain metabolism in evaluation of dementia. J Nucl Med, 1999. 40(Suppl 1): 71P.

    Google Scholar 

  460. Chang, C.Y. and Silverman, D.H., Accuracy of early diagnosis and its impact on the management and course of Alzheimer’s disease. Expert Rev Mol Diagn, 2004. 4:63–69.

    PubMed  Google Scholar 

  461. Silverman, D.H., Gambhir, S.S., Huang, H.W., et al., Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med, 2002. 43(2):253–266.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Villemagne, V.L. et al. (2007). The Aβcentric Pathway of Alzheimer’s Disease. In: Barrow, C.J., Small, D.H. (eds) Abeta Peptide and Alzheimer’s Disease. Springer, London. https://doi.org/10.1007/978-1-84628-440-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-440-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-961-6

  • Online ISBN: 978-1-84628-440-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics