Skip to main content

Copper Coordination by β-Amyloid and the Neuropathology of Alzheimer’s Disease

  • Chapter
Book cover Abeta Peptide and Alzheimer’s Disease

Abstract

It is nearly two decades since high concentrations of the redox active transition metal ions Cu2+ and Fe3+ found in β-amyloid plaques were first proposed to play an important role in the pathology of Alzheimer’s disease (AD) (see review by Bush [1]). Over this time, a new field of metallo-neurobiology relating to AD and other neurodegenerative diseases has arisen with approximately 250 original papers and more than 1000 references in secondary publications to date. At first, many neuroscientists failed to recognize the importance of this growing literature. However, a recent pilot Phase II clinical trial of a blood-brain barrier permeable metal protein attenuating compound (MPAC), clioquinol, in patients with moderately severe AD has shown promising results [2]. In a randomized sample of 36 subjects, the effect of treatment was significant in the more severely affected group, where those treated with clioquinol showed minimal deterioration in their cognitive scores (Alzheimer’s disease Assessment Scale =25) compared with substantial worsening of the scores for the placebo group. Although subjected to the usual cautions applied to small-scale trials, this is an encouraging result that renders even more urgent the full elucidation of the possible role of transition metals, particularly Cu and Zn, in AD. It must be stressed that, although there is much experimental evidence on various aspects of the interaction between Cu, Zn, and the constituent of the amyloid plaques, the β-amyloid peptide (Aβ), the structural biology and elucidation of the neuropathological significance of metal binding are very much works in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bush AI. Copper, zinc, and the metallobiology of Alzheimer’s disease. Alzheimer Dis Assoc Disord 2003;17:147–50.

    Article  PubMed  Google Scholar 

  2. Ritchie CW, Bush, AI, Mackinnon, A et al. Metalprotein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch Neurol 2003;60:1685–91.

    Article  PubMed  Google Scholar 

  3. Hershey CO, Hershey LA, Varnes A et al. Cerebrospinal fluid trace element content in dementia: clinical, radiologic and pathologic correlations. Neurology 1983;33:1350–53.

    PubMed  CAS  Google Scholar 

  4. Ehmann WD, Markesbery WR, Alauddin M, et al. Brain trace elements in Alzheimer’s disease. Neurotoxicology 1986;7:195–206.

    PubMed  CAS  Google Scholar 

  5. Thompson CM, Markesbery WR, Alaudin M et al. Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 1988;9:1–8.

    PubMed  CAS  Google Scholar 

  6. Basun H, Forssell LG, Wetterberg L, et al. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 1991;3:231–58.

    PubMed  CAS  Google Scholar 

  7. Samudralwar DL, Diprete CC, Ni BF, et al. Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J Neurol Sci 1995;130:139–45.

    Article  PubMed  CAS  Google Scholar 

  8. Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 1996;143:137–42.

    Article  PubMed  CAS  Google Scholar 

  9. Cornett CR, Markesbery WR, Ehmann WD. Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 1998;19:339–45.

    PubMed  CAS  Google Scholar 

  10. González C, Martin T, Cacho J, et al. Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriers. Eur J Clin Invest 1999;29:637–42.

    Article  PubMed  Google Scholar 

  11. Atwood, CS, Huang, X, Moir, RD, et al. Role of free radicals and metal ions in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst 1999;36:309–64.

    PubMed  CAS  Google Scholar 

  12. Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998;158:47–52.

    Article  PubMed  CAS  Google Scholar 

  13. Miller LM, Wang Q, Telivala TP, et al. Synchrotronbased infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with betaamyloid deposits in Alzheimer’s disease. J Struct Biol 2006; 155:30–37.

    Article  PubMed  CAS  Google Scholar 

  14. Suh SW, Jensen KB, Jensen MS, et al. Histological evidence implicating zinc in Alzheimer’s disease. Brain Res 2000;852:274–78.

    Article  PubMed  CAS  Google Scholar 

  15. Lee JY, Cole TB, Palmiter RD, et al. Contribution by synaptic zinc to the gender disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 2002;99:7705–10

    Article  PubMed  CAS  Google Scholar 

  16. Bush AI, Pettingell WH Jr, Paradis MD, et al. Modulation of Abeta adhesiveness and secretase site cleavage by zinc. J Biol Chem 1994;269:12152–58.

    PubMed  CAS  Google Scholar 

  17. Bush AI, Pettingell WH, Multhaup G, et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 1994;265:1464–67.

    Article  PubMed  CAS  Google Scholar 

  18. Bush AI, Moir RD, Rosenkranz KM, et al. Zinc and Alzheimer’s disease-response. Science 1995; 268:1921–23.

    Article  CAS  PubMed  Google Scholar 

  19. Clements A, Allsop D, Walsh DM, et al. Aggregation and metal-binding properties of mutant forms of the amyloid Aβ peptide of Alzheimer’s disease. J Neurochem 1996;66:740–47.

    Article  PubMed  CAS  Google Scholar 

  20. Yang DS, McLaurin J, Qin K, et al. Examining the zinc binding site of the amyloid-beta peptide. Eur J Biochem 2000;267:6692–8.

    Article  PubMed  CAS  Google Scholar 

  21. Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer A-beta by Cu(II) is induced by conditions representing physiological acidosis J Biol Chem 1998;273:12817–26.

    CAS  Google Scholar 

  22. Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001;30:665–76..

    Article  PubMed  CAS  Google Scholar 

  23. Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer’s disease A-beta amyloid deposits by biometal depletion. J Biol Chem 1999;274:23223–28

    Article  PubMed  CAS  Google Scholar 

  24. Huang X, Atwood CS, Moir RD, et al. Trace metal contamination initiates the apparent autoaggregation, amyloidosis, and oligomerization of Alzheimer’s A-beta peptides. J Biol Inorg Chem 2004;9:954–60.

    Article  PubMed  CAS  Google Scholar 

  25. Basun H, Forssell LG, Wetterberg L, Winblad B. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 1991;3:231–58.

    PubMed  CAS  Google Scholar 

  26. Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG. Binding of Zn(II), Cu(II), and Fe(II) ions to Alzheimer’s A beta peptide studied by fluorescence. Bioorg Med Chem Lett 1999;9:2243–8.

    Article  PubMed  CAS  Google Scholar 

  27. Syme CD, Nadal RC, Rigby, SEJ, et al. Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry and affinity of Abeta-(1–28):insights from a range of complementary spectroscopic techniques. J Biol Chem 2004;279:18169–77.

    Article  PubMed  CAS  Google Scholar 

  28. Zagorski MG, Barrow CJ. NMR studies of amyloid beta-peptides: proton assignments, secondary structure and mechanism of an alpha-helix-beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry 1992;31:5621–31.

    Article  PubMed  CAS  Google Scholar 

  29. Coles M, Bicknell W, Watson AA, et al. Solution structure of amyloid beta-peptide (1–40) in a watermicelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 1998;37:11064–77.

    Article  PubMed  CAS  Google Scholar 

  30. Shao H, Jao S.-C, Ma K, et al. Solution structures of micelle-bound amyloid beta-(1–40) and beta-(1–42) peptides of Alzheimer’s disease. J Mol Biol 1999;285:755–73

    Article  PubMed  CAS  Google Scholar 

  31. Barrow CJ, Zagorski MG. Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 1991;253: 179–82

    Article  PubMed  CAS  Google Scholar 

  32. Sorimachi K, Craik DJ. Structure determination of extracellular fragments of amyloid proteins involved in Alzheimer’s disease and Dutch-type hereditary cerebral haemorrhage with amyloidosis. Eur J Biochem 1994;219:237–51

    Article  PubMed  CAS  Google Scholar 

  33. Fletcher TG, Keire DA. The interaction of beta-amyloid protein fragment (12–28) with lipid environments. Protein Sci 1997;6: 666–75

    Article  PubMed  CAS  Google Scholar 

  34. Tickler AK, Smith, DG, Ciccotosto, GD, et al. Methylation of imidazole side chains of the Alzheimer’s disease amyloid beta peptide results in abolition of SOD-like structures and inhibition of neurotoxicity. J Biol Chem 2005;280:13355–63

    Article  PubMed  CAS  Google Scholar 

  35. Jin H, Yong Y, Jun L, et al. The solution structure of rat Abeta-(1–28) and its interaction with zinc ion: insights into the scarcity of amyloid deposition in aged rat brain. J Biol Inorg Chem 2004;9:627–35.

    Article  CAS  Google Scholar 

  36. Gröbner G, Glaubitz C, Williamson PTF, et al. Structural insight into the interaction of amyloid-beta peptide with biological membranes by solid state NMR. Focus Struct Biol 2001;1:203–14.

    Google Scholar 

  37. Antzutkin ON, Balbach JJ, Leapman RD, et al. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 2000;97:13045–50

    Article  PubMed  CAS  Google Scholar 

  38. Benzinger T, Gregory DM, Burkoth TS, et al. Propagating structure of Alzheimer’s beta-amyloid 10–35 is parallel beta-sheet with residues in exact order. Proc Natl Acad Sci USA 1998;95:13407–12.

    Article  PubMed  CAS  Google Scholar 

  39. Balbach JJ, Ishii Y, Antzutkin ON, et al. Amyloid fibril formation by Abeta16–22, a seven residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 2000;39:13748–59.

    Article  PubMed  CAS  Google Scholar 

  40. Lansbury PT, Costa PR, Griffiths JM, et al. Structural model for the beta-amyloid fibril based on inter-strand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol 1995;2:990–98.

    Article  PubMed  CAS  Google Scholar 

  41. Egnaczyk GF Greis KD, Stimson ER, et al. Photoaffinity cross-linking of Alzheimer’s disease amyloid fibrils reveals interstrand contact regions between assembled beta-amyloid peptide subunits. Biochemistry 2001;40:11706–14

    Article  PubMed  CAS  Google Scholar 

  42. Miura T, Suzuki K, Kohata N, et al. Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 2000;39:7024–31.

    Article  PubMed  CAS  Google Scholar 

  43. Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003;42:2768–73.

    Article  PubMed  CAS  Google Scholar 

  44. Huang X, Cuajungco MP, Atwood CS, et al. Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999;274:37111–16.

    Article  PubMed  CAS  Google Scholar 

  45. Peisach J, Blumberg WE. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch Biochem Biophys 1974;165:691–708.

    Article  PubMed  CAS  Google Scholar 

  46. Curtain CC, Ali F, Volitakis I, Cherny RA, et al. Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membranepenetrating structure containing superoxide dismutase-like subunits. J Biol Chem 2001;276:20466–73.

    Article  PubMed  CAS  Google Scholar 

  47. Alberts IL, Nadassy K, Wodak SJ. Analysis of zinc binding sites in protein crystal structures. Protein Sci 1998;7:1700–16

    PubMed  CAS  Google Scholar 

  48. Sundberg RJ, Martin RB. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev 1974;74:471–517.

    Article  CAS  Google Scholar 

  49. Liu S-T, Howlett G, Barrow CJ. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer’s disease. Biochemistry 1999;38:9373–78.

    Article  PubMed  CAS  Google Scholar 

  50. Parge HE, Hallewell RA, Tainer JA. Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA 1992;89:6109–13.

    Article  PubMed  CAS  Google Scholar 

  51. Viles JH, Cohen, FE, Prusiner SB, et al. Copper binding to the prion protein: Structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 1999;96:2042–47.

    Article  PubMed  CAS  Google Scholar 

  52. Brown DR, Wong BS, Hafiz F, et al. Normal prion protein has an activity like that of superoxide dismutase. Biochem J 1999;344:Pt 1:1–5.

    Article  PubMed  CAS  Google Scholar 

  53. Antzutkin ON. Amyloidosis of Alzheimer’s A peptides: solid-state nuclear magnetic resonance, electron paramagnetic resonance, transmission electron microscopy, scanning transmission electron microscopy and atomic force microscopy studies. Magn Reson Chem 2004;42:231–46.

    Article  PubMed  CAS  Google Scholar 

  54. Huang X, Atwood CS, Moir RD, et al. Zinc-induced Alzheimer’s Abeta1–40 aggregation is mediated by conformational factors. J Biol Chem 1997;272: 26464–70.

    Article  PubMed  CAS  Google Scholar 

  55. Narayanan S, Reif B. Characterization of chemical exchange between soluble and aggregated states of beta-amyloid by solution-state NMR upon variation of salt conditions. Biochemistry 2005;44:1444–52.

    Article  PubMed  CAS  Google Scholar 

  56. Ohtsu H, Shimazaki Y, Odani A, et al. Synthesis and characterization of imidazolate-bridged dinuclear complexes as active site models of Cu, Zn-SOD. J Am Chem Soc 2000;122:5733–41.

    Article  CAS  Google Scholar 

  57. Shivers BD, Hilbich C, Multhaup G, et al. Alzheimers-disease amyloidogenic glycoprotein expression pattern in rat-brain suggests a role in cell contact. EMBO J 1988;7:1365–70.

    PubMed  CAS  Google Scholar 

  58. Karr JW, Akintoye H, Kaupp LJ, Szalai VA. N-Terminal deletions modify the Cu2+ binding site in amyloid-beta. Biochemistry 2005 12;44:5478–87

    Article  CAS  Google Scholar 

  59. Karr JW, Kaupp LJ, Szalai VA. Amyloid-beta binds Cu2+ in a mononuclear metal ion binding site J Am Chem Soc 2004 20;126:13534–8

    Article  CAS  Google Scholar 

  60. Roher AE, Chaney MO, Kuo YM, et al. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 1996; 271:20631–5.

    Article  PubMed  CAS  Google Scholar 

  61. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 416:535–9.

    Article  PubMed  CAS  Google Scholar 

  62. Roher AE, Chaney MO, Kuo YM, et al. Morphology and toxicity of Abeta-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 1996;271:20631–5.

    Article  PubMed  CAS  Google Scholar 

  63. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 2005;8:79–84

    Article  PubMed  CAS  Google Scholar 

  64. Karr JW, Akintoye H, Kaupp LJ, Szalai VA. Copper is implicated in the in vitro formation and toxicity of Alzheimer’s disease amyloid plaques containing the beta-amyloid (A-beta) peptide. Proc Natl Acad Sci USA 2003;100:11934–40

    Google Scholar 

  65. Huang X, Atwood CS, Hartshorn MA, et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999;38:7609–16

    Article  PubMed  CAS  Google Scholar 

  66. Tabner BJ, Turnbull S, El-Agnaf OM, et al. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med 2002;32:1076–83.

    Article  PubMed  CAS  Google Scholar 

  67. Atwood CS, Perry G, Zeng H, et al. Copper mediates dityrosine cross-linking of Alzheimer’s amyloidbeta. Biochemistry 2004;43:560–68.

    Article  PubMed  CAS  Google Scholar 

  68. Schoneich C, Williams TD. Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His13 and His14 over His6: Detection of 2-Oxo-histidine by HPLCMS/ MS. Chem Res Toxicol 2002;15:717–22.

    Article  PubMed  CAS  Google Scholar 

  69. Gunther MR, Peters, JA, Sivaneri MK. Histidinyl radical formation in the self-peroxidation reaction of bovine copper-zinc superoxide dismutase. J Biol Chem 2002;277:9160–66

    Article  PubMed  CAS  Google Scholar 

  70. Alvarez B, Demicheli V, Durán R, Trujillo M, et al. Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical Free Radic Biol Med 2004;37: 813–22.

    Article  PubMed  CAS  Google Scholar 

  71. Barnham KJ, Haeffner F, Ciccotosto GD, et al. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease β-amyloid. FASEB J 2004;18:1427–9.

    PubMed  CAS  Google Scholar 

  72. Whittaker, JW. Free radical catalysis by galactose oxidase. Chem Rev 2003;103:2347–63.

    Article  PubMed  CAS  Google Scholar 

  73. Cukier RI, Nocera DG. Proton-coupled electron transfer. Annu Rev Phys Chem 1998;49:337–69.

    Article  PubMed  CAS  Google Scholar 

  74. Davies MJ, Hawkins CL. EPR spin trapping of protein radicals. Free Radic Biol Med 2004;36:1072–86.

    Article  PubMed  CAS  Google Scholar 

  75. Choo-Smith LP, Surewicz WK. The interaction between Alzheimer amyloid beta(1–40) peptide and ganglioside GM1-containing membranes. FEBS Lett 1997;402:95–98.

    Article  PubMed  CAS  Google Scholar 

  76. McLaurin Jo-A, Franklin T, Fraser PE, et al. Structural transitions associated with the interaction of Alzheimer β-amyloid peptides with gangliosides. J Biol Chem 1998;273:4506–15.

    Article  PubMed  CAS  Google Scholar 

  77. Ji S-R, Wu Y, Sui S-F. Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (A beta 1–40), which may potentially inhibit the fibril formation. J Biol Chem 2002;277:6273–79.

    Article  PubMed  CAS  Google Scholar 

  78. Del Angel VD, Dupuis F, Mornon J-P, et al. Viral fusion peptides and identification of membraneinteracting segments. Biochim Biophys Res Commun 2002;293:1153–60.

    Article  CAS  Google Scholar 

  79. Curtain CC, Ali FE, Smith DG, et al. Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-β peptide with membrane lipid. J Biol Chem 2003;278:2977–82.

    Article  PubMed  CAS  Google Scholar 

  80. Marsh D, Horváth LI Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochim Biophys Acta 1998;1376:267–96.

    PubMed  CAS  Google Scholar 

  81. Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 2001;15: 2433–44.

    Article  PubMed  CAS  Google Scholar 

  82. Horváèth LI, Brophy PJ, Marsh D. Exchange rates at the lipid-protein interface of myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 1988;27:46–52.

    Article  Google Scholar 

  83. Ulrich AS, Tichelaar W, Förster G, et al. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J 1999;77:829–41

    Article  PubMed  CAS  Google Scholar 

  84. Kuo YM, Kokjohn TA, Beach TG, et al. Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 2001;276: 12991–98.

    Article  PubMed  CAS  Google Scholar 

  85. Naslund J, Schierhorn A, Hellman U, et al. Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer’s disease and normal aging. Proc Natl Acad Sci USA 1994;91:8378–82.

    Article  PubMed  CAS  Google Scholar 

  86. Watson AA, Fairlie DP, Craik DJ. Solution structure of methionine oxidized amyloid beta-peptide (1–40). Does oxidation affect conformational switching? Biochemistry 1998;37:12700–06.

    Article  PubMed  CAS  Google Scholar 

  87. Palmblad M, Westlind-Danielsson A, Bergquist J. Oxidation of methionine 35 attenuates formation of amyloid beta-peptide 1–40 oligomers. J Biol Chem 2002;277:19506–10.

    Google Scholar 

  88. Hou L, Kang I, Marchant RE, et al. Methionine 35 oxidation reduces fibril assembly of the amyloid Abeta-( 1–42) peptide of Alzheimer’s disease. J Biol Chem 2002;277:40173–76.

    Article  PubMed  CAS  Google Scholar 

  89. Barnham KJ, Ciccotosto GD, Tickler AK, et al. Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 2003;278:42959–65.

    Article  PubMed  CAS  Google Scholar 

  90. Ali FE, Separovic F, Barrow CJ, et al. Methionine regulates copper/hydrogen peroxide oxidation products of Abeta. J Pept Sci 2005;11:353–60.

    Article  PubMed  CAS  Google Scholar 

  91. Boas JF. Electron paramagnetic resonance of copper proteins. In: Lontie R, editor. Copper Proteins and Copper Enzymes. Boca Raton, FL: CRC Press, 1984: 5–62.

    Google Scholar 

  92. Ciccotosto GD, Tew D, Curtain CC, et al. Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 2004;279:42528–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Curtain, C.C., Barnham, K.J. (2007). Copper Coordination by β-Amyloid and the Neuropathology of Alzheimer’s Disease. In: Barrow, C.J., Small, D.H. (eds) Abeta Peptide and Alzheimer’s Disease. Springer, London. https://doi.org/10.1007/978-1-84628-440-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-440-3_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-961-6

  • Online ISBN: 978-1-84628-440-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics