Skip to main content

Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance

  • Chapter
Identification of Continuous-time Models from Sampled Data

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Mathematical models of dynamic systems are required in most areas of scientific enquiry and take various forms, such as differential equations, difference equations, state-space equations and transfer functions. The most widely used approach to mathematical modelling involves the construction of mathematical equations based on physical laws that are known to govern the behaviour of the system. Amongst the drawbacks to this approach are that the resulting models are often complex and not easily estimated directly from the available data because of identifiability problems caused by over-parameterisation. This complexity also makes them difficult to use in applications such as control system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Aström. On the choice of sampling rates in parametric identification of time series. Information Science, 1(1):273–278, 1969.

    Article  Google Scholar 

  2. T. Bastogne, H. Garnier, and P. Sibille. A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process. International Journal of Control, 74(2):118–132, 2001.

    Article  MATH  Google Scholar 

  3. A.R. Bergström. Continuous-time Econometric Modeling. Oxford University Press, Oxford, UK, 1990.

    Google Scholar 

  4. T. Bohlin. Practical Grey-box Process Identification. Theory and Applications. Springer, Series: Advanced in Industrial Control, 2006.

    Google Scholar 

  5. C.T. Chou, M. Verhaegen, and R. Johansson. Continuous-time identification of SISO systems using Laguerre functions. IEEE Transactions on Signal Processing, 47(2):349–362, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Djamai, E. Tohme, R. Ouvrard, and S. Bachir. Continuous-time model identification using reinitialised partial moments. Application to power amplifier modeling. 14th IFAC Symposium on System Identification (SYSID’2006), Newcastle, Australia, March 2006.

    Google Scholar 

  7. H. Garnier, M. Gilson, and W.X. Zheng. A bias-eliminated least-squares method for continuous-time model identification of closed-loop systems. International Journal of Control, 73(1):38–48, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification from sampled data. Implementation issues and performance evaluation. International Journal of Control, 76(13):1337–1357, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Garnier, P. Sibille, and T. Bastogne. A bias-free least-squares parameter estimator for continuous-time state-space models. 36th IEEE Conference on Decision and Control (CDC’97), volume 2, pages 1860–1865, San Diego, California, USA, December 1997.

    Article  Google Scholar 

  10. H. Garnier, P. Sibille, and A. Richard. Continuous-time canonical state-space model identification via Poisson moment functionals. 34th IEEE Conference on Decision and Control (CDC’95), volume 2, pages 3004–3009, New Orleans, USA, December 1995.

    Google Scholar 

  11. H. Garnier, P. Sibille, and T. Spott. Influence of the initial covariance matrix on recursive LS estimation of continuous models via generalised Poisson moment functionals. 10th IFAC Symposium on System Identification (SYSID’94), pages 3669–3674, Copenhagen, Denmark, 1994.

    Google Scholar 

  12. M. Gilson, H. Garnier, P.C. Young, and P. Van den Hof. A refined IV method for closed-loop system identification. 14th IFAC Symposium on System Identification (SYSID’2006), pages 903–908, Newcastle, Australia, March 2006.

    Google Scholar 

  13. B. Haverkamp. State Space Identification. Theory and Practice. PhDthesis, TU Delft, The Netherlands, 2001.

    Google Scholar 

  14. L.L. Hoberock and R.H. Kohr. An experimental determination of differential equations to describe simple nonlinear systems. Joint Automatic Control Conference, Washington, Seattle, pages 616–623, 1966.

    Google Scholar 

  15. H. Huang, C. Chen, and Y. Chao. Augmented hybrid method for continuous process identification from sampled data with coloured noise. International Journal of Control, 46:1373–1390, 1987.

    Article  MATH  Google Scholar 

  16. R. Johansson. Identification of continuous-time models. IEEE Transactions on Signal Processing, 42(4):887–896, 1994.

    Article  Google Scholar 

  17. R. Johansson, M. Verhaegen, and C.T. Chou. Stochastic theory of continuous-time state-space identification. IEEE Transactions on Signal Processing, 47(1):41–50, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.E. Kearney and I.W. Hunter. System identification of human joint dynamics. Critical Reviews in Biomedical Engineering, 18(1):55–87, 2000.

    Google Scholar 

  19. E. Larsson. Identification of Stochastic Continuous-time Systems. Algorithms, Irregular Sampling and Cramér-Rao Bounds. PhD thesis, Uppsala University, Sweden, 2004.

    Google Scholar 

  20. V.S. Levadi. Parameter estimation of linear systems in the presence of noise. International Conference on Microwaves, Circuit Theory and Information Theory, Tokyo, Japan, 1964.

    Google Scholar 

  21. W. Li, H. Raghavan, and S. Shah. Subspace identification of continuous time models for process fault detection and isolation. Journal of Process Control, 13(5):407–421, 2003.

    Article  Google Scholar 

  22. P.M. Lion. Rapid identification of linear and nonlinear systems. Joint Automatic Control Conference, Washington, Seattle, pages 605–615, 1966.

    Google Scholar 

  23. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, USA, 2nd edition, 1999.

    Google Scholar 

  24. G. Mercère, R. Ouvrard, M. Gilson, and H. Garnier. Subspace based methods for continuous-time model identification of MIMO systems from filtered sampled data. 9th European Control Conference (ECC’07), Kos, Greece, July 2007.

    Google Scholar 

  25. A. Ohsumi, K. Kameyama, and K. Yamaguchi. Subspace identification for continuous-time stochastic systems via distribution-based approach. Automatica, 38(1):63–79, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  26. A.E. Pearson, Y. Shen, and V. Klein. Application of Fourier modulating function to parameter estimation of a multivariable linear differential system. 10th IFAC Symposium on System Identification (SYSID’94), pages 49–54, Copenhagen, Denmark, 1994.

    Google Scholar 

  27. M.S. Phadke and S.M. Wu. Modelling of continuous stochastic processses from discrete observations with application to sunspots data. Journal American Statistical Association, 69(346):325–329, 1974.

    Article  MATH  Google Scholar 

  28. D.T. Pham. Estimation of continuous-time autoregressive model from finely sampled data. IEEE Transactions on Signal Processing, 48:2576–2584, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Pintelon, J. Schoukens, and Y. Rolain. Box-Jenkins continuous-time modeling. Automatica, 36(7):983–991, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Pintelon and J. Schoukens. System Identification: a Frequency Domain Approach. IEEE Press, Piscataway, USA, 2001.

    Google Scholar 

  31. G.P. Rao and H. Unbehauen. Identification of continuous-time systems. IEE Proceedings-Control Theory and Applications, 153(2):185–220, 2006.

    Article  Google Scholar 

  32. K.J. Åström, P. Hagander, and J. Sternby. Zeros of sampled systems. Automatica, 20(1):31–38, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Sagara and Z.Y. Zhao. Numerical integration approach to on-line identification of continuous-time systems. Automatica, 26(1):63–74, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  34. D.C. Saha and G.P. Rao. Identification of Continuous Dynamical Systems-The Poisson Moment Functionals (PMF) approach. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  35. J. Schoukens, R. Pintelon, and H. Van Hamme. Identification of linear dynamic systems using piecewise constant excitations: use, misuse and alternatives. Automatica, 30(7):1953–1169, 1994.

    Article  Google Scholar 

  36. M. Shinbrot. On the analysis of linear and non linear systems. Transactions of the ASME, 79:547–552, 1957.

    MathSciNet  Google Scholar 

  37. N.K. Sinha and G.P. Rao (eds). Identification of Continuous-time Systems. Methodology and Computer Implementation. Kluwer Academic Publishers, Dordrecht, 1991.

    MATH  Google Scholar 

  38. T. Söderström, H. Fan, B. Carlsson, and S. Bigi. Least squares parameter estimation of continuous-time ARX models from discrete-time data. IEEE Transactions on Automatic Control, 42(5):659–673, 1997.

    Article  MATH  Google Scholar 

  39. T. Söderström and P. Stoica. System Identification. Series in Systems and Control Engineering. Prentice Hall, Englewood Cliffs, 1989.

    MATH  Google Scholar 

  40. H. Unbehauen and G.P. Rao. Identification of Continuous Systems. Systems and control series. North-Holland, Amsterdam, 1987.

    MATH  Google Scholar 

  41. H. Unbehauen and G.P. Rao. Continuous-time approaches to system identification-a survey. Automatica, 26(1):23–35, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Unbehauen and G.P. Rao. A review of identification in continuous-time systems. Annual Reviews in Control, 22:145–171, 1998.

    Article  Google Scholar 

  43. J.E. Valstar. In flight dynamic checkout. IEEE Transactions on Aerospace, AS1(2), 1963.

    Google Scholar 

  44. L. Wang and P. Gawthrop. On the estimation of continuous-time transfer functions. International Journal of Control, 74(9):889–904, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  45. P. Young. Parameter estimation for continuous-time models-a survey. Automatica, 17(1):23–39, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  46. P. C. Young. Regression analysis and process parameter estimation: a cautionary message. Simulation, 10:125–128, 1968.

    Google Scholar 

  47. P.C. Young. In flight dynamic checkout-a discussion. IEEE Transactions on Aerospace, 2:1106–1111, 1964.

    Article  Google Scholar 

  48. P.C. Young. The determination of the parameters of a dynamic process. Radio and Electronic Engineering (Journal of IERE), 29:345–361, 1965.

    Google Scholar 

  49. P.C. Young. Process parameter estimation and self adaptive control. In P.H. Hammond (ed), Theory of Self Adaptive Control Systems, Plenum Press, pages 118–140, 1966.

    Google Scholar 

  50. P.C. Young. An instrumental variable method for real-time identification of a noisy process. Automatica, 6:271–287, 1970.

    Article  Google Scholar 

  51. P.C. Young. Some observations on instrumental variable methods of time-series analysis. International Journal of Control, 23:593–612, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  52. P.C. Young. Recursive Estimation and Time-series Analysis. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  53. P.C. Young. Data-based mechanistic modeling of environmental, ecological, economic and engineering systems. Journal of Modelling & Software, 13:105–122, 1998.

    Article  Google Scholar 

  54. P.C. Young. Optimal IV identification and estimation of continuous-time TF models. 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July 2002.

    Google Scholar 

  55. P.C. Young. The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models. Journal Européen des Systèmes Automatisés, 2008.

    Google Scholar 

  56. P.C. Young and H. Garnier. Identification and estimation of continuous-time data-based mechanistic (DBM) models for environmental systems. Environmental Modelling and Software, 21(8):1055–1072, August 2006.

    Article  Google Scholar 

  57. P.C. Young, H. Garnier, and M. Gilson. An optimal instrumental variable approach for identifying hybrid continuous-time Box-Jenkins model. 14th IFAC Symposium on System Identification (SYSID’2006), pages 225–230, Newcastle, Australia, March 2006.

    Google Scholar 

  58. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part III, extensions. International Journal of Control, 31:741–764, 1980.

    Article  MATH  Google Scholar 

  59. P.C. Young, P. McKenna, and J. Bruun. Identification of nonlinear stochastic systems by state dependent parameter estimation. International Journal of Control, 74:1837–1857, 2001.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Garnier, H., Wang, L., Young, P.C. (2008). Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance. In: Garnier, H., Wang, L. (eds) Identification of Continuous-time Models from Sampled Data. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84800-161-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-161-9_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-160-2

  • Online ISBN: 978-1-84800-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics