Skip to main content

Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics

  • Chapter
Automotive Model Predictive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 402))

Abstract

The Homogeneous Charge Compression Ignition (HCCI) principle holds promise to increase efficiency and to reduce emissions from internal combustion engines. As HCCI combustion lacks direct ignition timing control and auto-ignition depends on the operating condition, control of auto-ignition is necessary. Since auto-ignition of a homogeneous mixture is very sensitive to operating conditions, a fast combustion phasing control is necessary for reliable operation. To this purpose, HCCI modeling and model-based control with experimental validation were studied. A six-cylinder heavy-duty HCCI engine was controlled on a cycle-to-cycle basis in real time using a variety of sensors, actuators and control structures for control of the HCCI combustion in comparison. The controllers were based on linearizations of a previously presented physical, nonlinear, model of HCCI including cylinder wall temperature dynamics. The control signals were the inlet air temperature and the inlet valve closing. A system for fast thermal management was installed and controlled using mid-ranging control. The resulting control performance was experimentally evaluated in terms of response time and steady-state output variance. For a given operating point, a comparable decrease in steady-state output variance was obtained either by introducing a disturbance model or by changing linearization point. Additionally, the robustness towards disturbances was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrell, F., Ångström, H.E., Eriksson, B., Wikander, J.: Transient control of HCCI through combined intake and exhaust valve actuation. SAE Technical Papers 2003-01-3172 (2003)

    Google Scholar 

  2. Ahmed, S., Tzeuch, T., Amnéus, P., Blurock, E., Soyhan, H., Mauss, F.: PLANET D4 report, The European Community (2003)

    Google Scholar 

  3. Amnéus, P.: Homogeneous Ignition—Chemical Kinetic Studies for IC-Engine Applications. PhD thesis, Div. Combustion Physics, Lund University, Lund, Sweden (2002)

    Google Scholar 

  4. Bemporad, A., Borelli, F., Morari, M.: Model predictive control based on linear programming-the explicit solution. IEEE Trans. Automatic Control 47, 1974–1985 (2002)

    Article  Google Scholar 

  5. Bengtsson, J., Gäfvert, M., Strandh, P.: Modeling of HCCI engine combustion for control analysis. In: Proc. Conf. Decision and Control (CDC 2004), Bahamas (December 2004)

    Google Scholar 

  6. Bengtsson, J., Strandh, P., Johansson, R., Tunestål, P., Johansson, B.: Closed-loop combustion control of homogeneous charge compression ignition (HCCI) engines dynamics. Int. J. Adaptive Control and Signal Processing 18, 167–179 (2004)

    Article  Google Scholar 

  7. Bengtsson, J., Strandh, P., Johansson, R., Tunestål, P., Johansson, B.: System identification of homogenous charge compression ignition (HCCI) engine dynamics. In: IFAC Symp. Advances in Automotive Control (AAC 2004), Salerno, Italy, April 19-23 (2004)

    Google Scholar 

  8. Bengtsson, J., Strandh, P., Johansson, R., Tunestål, P., Johansson, B.: Hybrid control of homogeneous charge compression ignition (HCCI) engine dynamics. Int. J. Control 79(5), 422–448 (2006)

    Article  MATH  Google Scholar 

  9. Bengtsson, J., Strandh, P., Johansson, R., Tunestål, P., Johansson, B.: Hybrid modelling of homogeneous charge compression ignition (HCCI) engine dynamic—A survey. International Journal of Control 80(11), 1814–1848 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bitar, E.Y., Schock, H.J., Oppenheim, A.K.: Model for control of combustion in a piston engine. SAE Technical Paper 2006-01-0401 (2006)

    Google Scholar 

  11. Blom, D., Karlsson, M., Ekholm, K., Tunestål, P., Johansson, R.: HCCI engine modeling and control using conservation principles. SAE World Congress, SAE Technical Paper 2008-01-0789, Detroit, MI (April 2008)

    Google Scholar 

  12. Chang, J., Güralp, O., Filipi, Z., Assanis, D., Kuo, T.W., Najt, P., Rask, R.: New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux. SAE Technical Papers (2004-01-2996) (2004)

    Google Scholar 

  13. Chase Jr., M.W., Davies, C.A., Davies Jr., J.R., Fulrip, D.J., McDonald, R.A., Syverud, A.N.: JANAF Thermochemical tables. J. Physical and Chemical Reference Data 14(Suppl. 1) (1985)

    Google Scholar 

  14. Chiang, C.J., Stefanopoulou, A.G., Jankovic, M.: Nonlinear observer-based control of load transitions in homogeneous charge compression ignition engines. IEEE Trans. Control Systems Technology 15(3), 438–448 (2007)

    Article  Google Scholar 

  15. Chiang, C.J., Stefanopoulou, A.G.: Sensitivity analysis of combustion timing and duration of homogeneous charge compression ignition (HCCI) engines. In: Proc. 2006 Am. Control Conf., Minneapolis, MN, USA (June 2006)

    Google Scholar 

  16. Christensen, M., Einewall, P., Johansson, B.: Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas—A comparison with spark-ignition operation, SAE Technical Paper 972874 (1997)

    Google Scholar 

  17. Christensen, M., Hultqvist, A., Johansson, B.: Demonstrating the multi-fuel capability of a homogeneous charge compression ignition engine with variable compression ratio. SAE Technical Papers 1999-01-3679 (1999)

    Google Scholar 

  18. Colin, O., Pires da Cruz, A., Jay, S.: Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations. Proc. Combustion Institute 30, 2649–2656 (2005)

    Article  Google Scholar 

  19. Cook, D.J., Pitsch, H., Chen, J.H., Hawkes, E.R.: Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proc. Combustion Institute 31, 2903–2911 (2007)

    Article  Google Scholar 

  20. Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of isooctane oxidation. Combustion and Flame 129, 253–280 (2002)

    Article  Google Scholar 

  21. Egeland, O., Gravdahl, J.T.: Modeling and Simulation For Automatic Control. Marine Cybernetics, Trondheim, Norway (2002)

    Google Scholar 

  22. Eriksson, L., Nielsen, L., Glavenius, M.: Closed loop ignition control by ionization current interpretation. SAE Technical Papers 970854 (1997)

    Google Scholar 

  23. Fieweger, K., Blumenthal, R., Adomeit, G.: Self-ignition of s.i. engine model fuels: A shock tube investigation at high pressure. Combustion and Flame 109, 599–619 (1997)

    Article  Google Scholar 

  24. Franke, A.: Characterization of an Electrical Sensor for Combustion Diagnostics. PhD thesis, ISRN LUTFD/TFCP–80–SE, Department of Physics, Lund University, Lund, Sweden (2002)

    Google Scholar 

  25. Gavillet, G.G., Maxson, J.A., Oppenheim, A.K.: Thermodynamic and thermochemical aspects of combustion in premixed charge engines revisited. SAE Technical Paper 930432, 20 (1993)

    Google Scholar 

  26. Gillbrand, P., Johansson, H., Nytomt, J.: Method and apparatus for detecting ion current in an internal combustion engine ignition system. Technical report, U.S. Patent No. 4,648,367 (1987)

    Google Scholar 

  27. Gordon, S., McBride, B.J.: Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis; II. Users Manual and Program Description. NASA Reference Publication 1311, October 1994 (June 1996)

    Google Scholar 

  28. Halstead, M.P., Kirsch, L.J., Quinn, C.P.: The auto-ignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model. Combustion and Flame 30, 45–60 (1977)

    Article  Google Scholar 

  29. Haraldsson, G., Tunestål, P., Johansson, B., Hyvonen, J.: HCCI combustion phasing with closed-loop combustion control using variable compression ratio in a multi-cylinder engine. SAE Transactions 112(4), 1233–1245 (2003) (also JSAE 20030126)

    Google Scholar 

  30. Haraldsson, G., Tunestål, P., Johansson, B., Hyvonen, J.: HCCI closed-loop combustion control using fast thermal management. SAE Transactions 113(3), 599–610 (2004)

    Google Scholar 

  31. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  32. Hultqvist, A., Christensen, M., Johansson, B., Franke, A., Richter, M., Aldén, M.: A study of the homogeneous charge compression ignition combustion process by chemoluminescence imaging, SAE Technical Paper 1999-01-3680 (1999)

    Google Scholar 

  33. Ishibashi, Y., Asai, M.: Improving the exhaust emissions of two-stroke engines by applying the activated radical combustion. SAE Technical Papers 960742 (1996)

    Google Scholar 

  34. Johansson, R.: System Modeling and Identification. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  35. Johansson, R., Rantzer, A.: Nonlinear and Hybrid Systems in Automotive Control. Springer, London (2003)

    MATH  Google Scholar 

  36. Maciejowski, J.: Predictive Control with Constraints. Prentice Hall, Pearson Education, England (2002)

    Google Scholar 

  37. Mack, J.H., Flowers, D.L., Buchholz, B.A., Dibble, R.W.: Investigation of HCCI combustion of diethyl ether and ethanol mixtures using carbon 14 tracing and numerical simulations. Proc. Combustion Institute 30, 2693–2700 (2005)

    Article  Google Scholar 

  38. Maroteaux, F., Noel, L.: Development of a reduced n −heptane oxidation mechanism for HCCI combustion modeling. Combustion and Flame 146, 246–267 (2006)

    Article  Google Scholar 

  39. Martinez-Frias, J., Aceves, S.M., Flowers, D.L., Smith, J.R., Dibble, R.W.: HCCI engine control by thermal management. SAE Technical Papers 2000-01-2869 (2000)

    Google Scholar 

  40. Jia, M., Xie, M.: A chemical kinetics model of iso-octane oxidation for HCCI engines. Fuel, 2593–2604 (2006)

    Google Scholar 

  41. Olsson, J.O., Tunestål, P., Haraldsson, G., Johansson, B.: A turbo charged dual fuel HCCI engine. SAE Technical Papers 2001-01-1896 (2001)

    Google Scholar 

  42. Olsson, J.O., Tunestål, P., Johansson, B.: Closed-loop control of an HCCI engine. SAE Technical Papers 2001-01-1031 (2001)

    Google Scholar 

  43. Onishi, S., Hong Jo, S., Shoda, K., Do Jo, P., Kato, S.: Active thermo-atmosphere combustion (ATAC)—A new combustion process for internal combustion engines. SAE Technical Papers 790501 (1979)

    Google Scholar 

  44. Oppenheim, A.K., Kuhl, A.L., Packard, A.K., Hedrick, J.K., Johnson, W.P.: Model and control of heat release in engines. SAE Technical Paper SAE 960601, Engine Combustion and Flow Diagnostics, SAE SP-1157, pp. 15–23 (1996)

    Google Scholar 

  45. Rausen, D.J., Stefanopoulou, A.G., Kang, J.M., Eng, J.A., Kuo, T.W.: A mean-value model for control of homogeneous charge compression ignition (HCCI) engines. In: Proc. 2004 Am. Control Conf. (ACC 2004), Boston, Massachusetts, USA (July 2004)

    Google Scholar 

  46. Ravi, N., Roelle, M.J., Jungkunz, A.F., Gerdes, J.C.: A physically based two-state model for controlling exhaust recompression HCCI in gasoline engines. In: Proc. IMECE 2006, Chicago, IL, USA (November 2006)

    Google Scholar 

  47. Richter, M., Franke, A., Engström, J., Hultqvist, A., Johansson, B., Aldén, M.: The influence of charge inhomogeneity on the HCCI combustion process. SAE Technical Papers 2000-01-2868 (2000)

    Google Scholar 

  48. Sankarana, R., Hong, G.I., Hawkes, E.R., Chen, J.H.: The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proc. Combustion Institute 30, 875–882 (2005)

    Article  Google Scholar 

  49. Semenov, N.N.: Chain Reactions. Goskhimtekhizdat, Leningrad (1934); transl.: Chemical Kinetics and Chain Reactions. Oxford University Press, Oxford (1935)

    Google Scholar 

  50. Shahbakhti, M., Koch, R.: Control oriented modeling of combustion phasing for an HCCI engine. In: Proc. 2007 Am. Control Conf., New York City, NY, USA (July 2007)

    Google Scholar 

  51. Shaver, G.M., Gerdes, J.C., Jain, P., Caton, P.A., Edwards, C.F.: Modeling for control of HCCI engines. In: Proc. American Control Conference, Denver, CO, pp. 749–754 (2003)

    Google Scholar 

  52. Shaver, G.M., Gerdes, J.C., Roelle, M.: Physics-based closed-loop control of phasing, peak pressure and work output in HCCI engines utilizing variable valve actuation. In: Proc. American Control Conference, Boston, MA, pp. 150–155 (2004)

    Google Scholar 

  53. Shaver, G.M., Roelle, M., Gerdes, J.C.: Decoupled control of combustion timing and work output residual-affected HCCI engines. In: Proc. 2005 American Control Conf., Portland, OR, June 8-10, pp. 3871–3876 (2005)

    Google Scholar 

  54. Shaver, G.M., Roelle, M., Gerdes, J.C.: Two-input two-output control model of HCCI engines. In: Proc. 2006 American Control Conf., Minneapolis, MN, June 14-16, pp. 472–477 (2006)

    Google Scholar 

  55. Shaver, G.M., Roelle, M.J., Gerdes, J.C.: Modeling cycle-to-cycle dynamics and mode transition in HCCI engines with variable valve actuation. Control Engineering Practice 14, 213–222 (2006)

    Article  Google Scholar 

  56. Sjöberg, M., Dec, J.E.: Comparing enhanced natural thermal stratification against retarded combustion phasing for smoothing of HCCI heat-release rates. SAE Technical Papers 2004-01-2994 (2004)

    Google Scholar 

  57. Sjöberg, M., Dec, J.E.: Combined effects of fuel-type and engine speed on intake temperature requirements and completeness of bulge-gas reactions for HCCI combustion. SAE Technical Papers 2003-01-3173 (2003)

    Google Scholar 

  58. Stockinger, M., Schäpertöns, H., Kuhlmann, P.: Versuche an einem gemischansaugenden Verbrennungsmotor mit Selbstzündung. MTZ 53, 80–85 (1992)

    Google Scholar 

  59. Strandh, P., Bengtsson, J., Christensen, M., Johansson, R., Vressner, A., Tunestål, P., Johansson, B.: Ion current sensing for HCCI combustion feedback. SAE Technical Papers 2003-01-3216 (2003)

    Google Scholar 

  60. Suzuki, H., Koike, N., Ishii, H., Odaka, M.: Exhaust purification of Diesel engines by homogeneous charge with compression ignition. SAE Technical Papers 970315 (1997)

    Google Scholar 

  61. Tanaka, S., Ayala, F., Keck, J.C.: A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combustion and Flame 133, 467–481 (2003)

    Article  Google Scholar 

  62. Thring, R.H.: Homogeneous-charge compression-ignition (HCCI) engines. SAE Technical Papers 892068 (1989)

    Google Scholar 

  63. Turns, S.R.: An Introduction to Combustion—Concepts and Applications, 2nd edn. McGraw-Hill, Singapore (2000)

    Google Scholar 

  64. Widd, A., Ekholm, K., Tunestål, P., Johansson, R.: Experimental evaluation of predictive combustion phasing control in an HCCI engine using fast thermal management and VVA. In: Proc. 18th IEEE Conf. Control Applications, St. Petersburg, Russia (July 2009)

    Google Scholar 

  65. Widd, A., Tunestål, P., Johansson, R.: Physical modeling and control of homogeneous charge compression ignition (HCCI) engines. In: Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, December 2008, pp. 5615–5620 (2008)

    Google Scholar 

  66. Wiebe, I.I.: Brennverlauf und Kreisprozessrechnung. VEB Verlag Technik, Berlin (1970)

    Google Scholar 

  67. Woschni, G.: A universally applicable equation for instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Papers 670931 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Johansson, R., Tunestål, P., Widd, A. (2010). Modeling and Model-based Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics. In: del Re, L., Allgöwer, F., Glielmo, L., Guardiola, C., Kolmanovsky, I. (eds) Automotive Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 402. Springer, London. https://doi.org/10.1007/978-1-84996-071-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-071-7_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-070-0

  • Online ISBN: 978-1-84996-071-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics