Skip to main content

Fatigue Analysis of Offshore Structures

  • Chapter
  • First Online:
Stochastic Analysis of Offshore Steel Structures

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

This chapter presents the fatigue phenomenon process in structural elements and connections. It includes six sections. The first section summarizes fatigue process, the source of fatigue, and the modeling of fatigue in general. The second section is devoted to the calculation of fatigue damages by using different methods. The fracture mechanics and SN curve approaches are especially highlighted and their formulations are presented. Then, the cumulative fatigue damage is explained by using the Palmgren–Miner’s rule. In the third section, to estimate the fatigue damage, cycle counting procedures are presented for random stresses with the emphasis on the rainflow cycle counting. The fourth section is devoted to the parametric formulation of the probability distribution of random stress ranges. The parameters in this formulation are determined from numerical experiments by using the rainflow cycle counting algorithm. The fifth section presents and explains the total spectral fatigue damage for a given lifetime by using a multilinear SN fatigue model. The sixth section demonstrates the fatigue damage calculation of an example offshore structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsom JM, Rolfe ST (2000) Fracture and fatigue control in structures: applications of fracture mechanics, 3rd edn. Butterworth-Heinemann, Guildford

    Google Scholar 

  2. Kirkegaard PH, Sorensen JD, Brincker R (1991) Fatigue reliability analysis of a mono-tower platform. Mar Struct 4:413–434

    Article  Google Scholar 

  3. Kam JCP (1988) Fatigue reliability assessment of offshore structures. Qual Reliab Eng Int 4:41–48

    Article  Google Scholar 

  4. Wirsching PH (1980) Fatigue reliability in welded joints of offshore structures. Int J Fatigue 2(2):77–83

    Article  Google Scholar 

  5. Ang AHS, Cheung MC, Shugar TA, Fernie JD (2001) Reliability-based fatigue analysis and design of floating structures. Mar Struct 14:25–36

    Article  Google Scholar 

  6. Karamchandani A, Dalane JI, Bjerager P (1991) Systems reliability of offshore structures including fatigue and extreme wave loading. Mar Struct 4:353–379

    Article  Google Scholar 

  7. Chryssanthopoulos MK, Righiniotis TD (2006) Fatigue reliability of welded steel structures. J Constr Steel Res 62:1199–1209

    Article  Google Scholar 

  8. Ayala-Uraga E, Moan T (2007) Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations. Int J Fatigue 29:444–456

    Article  Google Scholar 

  9. Dalane JI (1997) Fatigue reliability-measured response of the heidrun TLP tethers. Mar Struct 10:611–628

    Article  Google Scholar 

  10. Tovo R (2001) On the fatigue reliability evaluation of structural components under service loading. Int J Fatigue 23:587–598

    Article  Google Scholar 

  11. Ramsamooja DV, Shugar TA (2002) Reliability analysis of fatigue life of the connectors—the US mobile offshore base. Mar Struct 15:233–250

    Article  Google Scholar 

  12. Kam JCP, Birkinshaw M (1994) Reliability-based fatigue and fracture mechanics assessment methodology for offshore structural components. Int J Fatigue 16(3):183–192

    Article  Google Scholar 

  13. Siddiqui NA, Ahmad S (2001) Fatigue and fracture reliability of TLP tethers under random loading. Mar Struct 14:331–352

    Article  Google Scholar 

  14. Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue 25:679–702

    Article  MATH  Google Scholar 

  15. Dover WD (1981) Fatigue fracture mechanics analysis of offshore structures. Int J Fatigue, April, pp 52–60

    Google Scholar 

  16. Kam JCP (1990) Recent development in the fast corrosion fatigue analysis of offshore structures subject to random wave loading. Int J Fatigue 12(6):458–468

    Google Scholar 

  17. Yao JTP, Kozin F, Wen Y-K, Yang J-N, Schueller GI, Ditlevsen O (1986) Stochastic fatigue fracture and damage analysis. Struct Saf 3:231–267

    Article  Google Scholar 

  18. Etube LS (2001) Fatigue and fracture mechanics of offshore structures. Professional Engineering, London

    Google Scholar 

  19. Boyer HE, ASM, Gall TL (1985) Metals handbook. ASM International, Ohio

    Google Scholar 

  20. Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng Trans ASME 85(Series D):528–534

    Google Scholar 

  21. Kanniwen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    Google Scholar 

  22. Dover WD, Dharmavasan S, Brennan FB, Marsh KJ (eds) (1995) Fatigue crack growth in offshore structures. Engineering Materials Advisory Services (EMAS), Warley

    Google Scholar 

  23. Dover WD, Rao AGM (1996) fatigue in offshore structures, vol 1–2. Balkema, Rotterdam

    Google Scholar 

  24. Dover WD (1979) Variable amplitude fatigue of welded structures. In: Proceedings of international conference on fracture mechanics, current status, future prospects, Cambridge

    Google Scholar 

  25. Kam JCP, Dover WD (1988) Fatigue crack growth in offshore welded tubular joints under real life variable amplitude loading. In: Proceedings of international conference on fatigue crack growth under variable amplitude loading, Paris

    Google Scholar 

  26. de Back J, Vaessen GHG (1981) Fatigue and corrosion fatigue behaviour of offshore structures. Final report, foundation for materials research in the sea, Delft

    Google Scholar 

  27. Gupta A, Singh RP (1986) Fatigue Behaviour of Offshore Structures. Springer-Verlag, Berlin

    Book  Google Scholar 

  28. API RP 2A WSD (2000) Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute, Washington, DC

    Google Scholar 

  29. DNV-RP-C203 (2005) Fatigue design of offshore steel structures. Recommended practice, Det Norske Veritas, Høvik

    Google Scholar 

  30. ABS (2003) Guide for the fatigue assessment of offshore structures. American Bureau of Shipping, Houston

    Google Scholar 

  31. ABS (2010) Guide for spectral based fatigue analysis for FPSO installations. American Bureau of Shipping, Houston

    Google Scholar 

  32. Karadeniz H (1991) An improved fatigue analysis for offshore structures. Mar Struct 4:333–352

    Article  Google Scholar 

  33. Karadeniz H (2001) Uncertainty modelling in the fatigue reliability calculation of offshore structures. Reliab Eng Syst Saf 74(3):323–335

    Article  Google Scholar 

  34. Karadeniz H (1990) Fatigue analysis of offshore structures under non-narrow banded stress processes. In: Proceedings of 1st european offshore mechanics. symposium (EUROMS-90), pp 221–228

    Google Scholar 

  35. NORSOK Standards (1998) Design of steel structures, N-004. Norwegian Technology Standards Institution, Oslo

    Google Scholar 

  36. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12(3):A159–A164

    Google Scholar 

  37. Fatemi A, Yangt L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34

    Article  Google Scholar 

  38. Fisher JW, Kulak GL, Smith IFC (1998) A fatigue primer for structural engineers. National Steel Bridge Alliance, Chicago

    Google Scholar 

  39. Karadeniz H (1991) An improved fatigue analysis for offshore structures. Mar Struct 4:333–352

    Article  Google Scholar 

  40. Schutz W (1981) Procedures for the prediction of fatigue life of tubular joints. In: Proceedings of international conference on steel in marine structures, Paris, pp 254–308

    Google Scholar 

  41. Hwang W, Han KS (1986) Cumulative damage models and multi-stress fatigue life prediction. J Compos Mater 20(2):125–153

    Article  Google Scholar 

  42. van Paepegem W, Degrieck J (2002) Effects of load sequence and block loading on the fatigue response of fibre-reinforced composites. Mech Adv Mater Struct 9(1):19–35

    Article  Google Scholar 

  43. Dowling NE (1972) Fatigue failure predictions for complicated stress-strain histories. J Mater 7(1):71–87

    MathSciNet  Google Scholar 

  44. Research Designs & Standards Organization (2008) Guidelines for assessment of residual fatigue life of steel girder bridges, BS-91, Government of India Ministry of Railways, Lucknow

    Google Scholar 

  45. Ship Structure Committee (200) Fatigue of aluminum structural weldments, SSC-410, Washington DC

    Google Scholar 

  46. Matsuishi M, Endo T (1968) Fatigue of metals subjected to varying stress. In: Proceedings of Kyushi Branch JSME, pp 37–40

    Google Scholar 

  47. Olagnon M, Guede Z (2008) Rainflow fatigue analysis for loads with multimodal power spectral densities. Mar Struct 21:160–176

    Article  Google Scholar 

  48. Bishop WM, Sherratt F (1990) A theoretical solution for the estimation of rainflow ranges from power spectral density data. Fatigue Fract Eng Mater Struct 13(4):311–326

    Article  Google Scholar 

  49. Sunder R, Seetharam SA, Bhaskaran TA (1984) Cycle counting for fatigue crack growth analysis. Int J Fatigue 6(3):147–156

    Article  Google Scholar 

  50. Glinka G, Kam JCP (1987) Rainflow counting algorithm for very long stress histories. Int J Fatigue 9(3):223–228

    Article  Google Scholar 

  51. Rychlik I, Gupta S (2007) Rain-flow fatigue damage for transformed Gaussian loads. Int J Fatigue 29:406–420

    Article  MATH  Google Scholar 

  52. Rychlik I (1987) A new definition of the rainflow cycle counting method. Int J Fatigue 2:119–121

    Article  Google Scholar 

  53. Rychlik I (1996) Extremes, rainflow cycles and damage functionals in continuous random processes. Stoch Process Appl 63:97–116

    Article  MathSciNet  MATH  Google Scholar 

  54. Rychlik I (1993) Note on cycle counts in irregular loads. Fatigue Fract Eng Mater Struct 16(4):377–390

    Article  MathSciNet  Google Scholar 

  55. Lindgren G, Rychlik I (1987) Rain flow cycle distributions for fatigue life prediction under Gaussian load processes. Fatigue Fract Eng Mater Struct 10(3):251–260

    Article  Google Scholar 

  56. Rychlik I (1988) Rain-flow-cycle distributions for ergodic load processes. SIAM J Appl Math 48(3):662–679

    Article  MathSciNet  MATH  Google Scholar 

  57. Anthes RJ (1997) Modified rainflow counting keeping the load sequence. Int J Fatigue 19(7):529–535

    Article  Google Scholar 

  58. Wirsching PH, Light MC (1980) Fatigue under wide band random stresses. J Struct Div ASCE 106(7):1593–1606

    Google Scholar 

  59. Larsen CE, Lutes LD (1991) Predicting the fatigue life of offshore structures by the single-moment spectral method. Probab Eng Mech 6(2):96–108

    Article  Google Scholar 

  60. Jiao G, Moan T (1990) Probabilistic analysis of fatigue due to Gaussian load processes. Probab Eng Mech 5(2):76–83

    Article  Google Scholar 

  61. Bouyssy V, Naboishikov SM, Rackwitz R (1993) Comparison of analytical counting methods for Gaussian processes. Struct Saf 12:35–57

    Article  Google Scholar 

  62. Petrucci G, Zuccarello B (1999) On the estimation of the fatigue cycle distribution from spectral density data. Proc Inst Mech Eng Part C J Mech Eng Sci 213:819–831

    Article  Google Scholar 

  63. Zhao W, Baker MJ (1992) On the probability density function of rainflow stress range for stationary Gaussian processes. Int J Fatigue 14(2):121–135

    Article  Google Scholar 

  64. Chaudhury GK, Dover WD (1985) Fatigue analysis of offshore platforms subject to sea wave loadings. Int J Fatigue 7(1):13–19

    Article  Google Scholar 

  65. Dirlik T (1985) Application of computers in fatigue. Ph.D. thesis, University of Warwick, Coventry

    Google Scholar 

  66. Karadeniz H (2009) SAPOS, spectral analysis program of structures. Report, structural mechanical division, faculty of civil engineering and geoscience, TUDelft, Delft

    Google Scholar 

  67. Karadeniz H (1982) Thoughts on determination of fatigue parameters for offshore steel structures. Report, structural mechanical division, faculty of civil engineering and geoscience, Faculty of civil engineering and geoscience, TUDelft, Delft

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Karadeniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Karadeniz, H., Saka, M.P., Togan, V. (2013). Fatigue Analysis of Offshore Structures. In: Stochastic Analysis of Offshore Steel Structures. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-84996-190-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-190-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-189-9

  • Online ISBN: 978-1-84996-190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics