Skip to main content

Whole-body Motion Planning – Building Blocks for Intelligent Systems

  • Chapter
Motion Planning for Humanoid Robots

Abstract

Humanoid robots have become increasingly sophisticated, both in terms of their movement as well as their sensorial capabilities. This allows one to target for more challenging problems, eventually leading to robotic systems that can perform useful tasks in everyday environments. In this paper, we review some elements we consider to be important for a movement control and planning architecture. We first explain the whole-body control concept, which is the underlying basis for the subsequent elements. We then present a method to determine optimal stance locations with respect to a given task. This is a key element in an action selection scheme that evaluates a set of controllers within a parallel prediction architecture. It allows the robot to quickly react to changing environments. We then review a more global movement planning approach which casts the overall robot movement into an integral optimization problem, and leads to smooth and collision-free movements within interaction time. This scheme is then extended to cover the problem of grasping simple objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Malek K, Mi Z, Yang J, Nebel K (2006) Optimization-based trajectory planning of the human upper body. Robotica 24(6):683–696

    Article  Google Scholar 

  2. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM 45(6):891–923

    Article  MATH  MathSciNet  Google Scholar 

  3. Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic control of highly redundant articulated structures. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS), Canada

    Google Scholar 

  4. Berenson D, Diankov R, Nishiwaki K, Kagami S, Kuffner J (2007) Grasp planning in complex scenes. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots (humanoids), USA

    Google Scholar 

  5. Bergener T, Bruckhoff C, Dahm P, Janssen H, Joublin F, Menzner R, Steinhage A, von Seelen W (1999) Complex behavior by means of dynamical systems for an anthropomorphic robot. Neural Netw

    Google Scholar 

  6. Bizzi E, d’Avella A, P. Saltiel P, Tresch M (2002) Modular organization of spinal motors systems. Neuroscientist 8:437–442

    Article  Google Scholar 

  7. Bolder B, Brandl H, Heracles M, Janssen H, Mikhailova I, Schmdderich J, Goerick C (2008) Expectation-driven autonomous learning and interaction system. In Proceedings of the IEEE-RAS conference on humanoid robots (humanoids), Korea

    Google Scholar 

  8. Bolder B, Dunn M, Gienger M, Janssen H, Sugiura H, Goerick C (2007) Visually guided whole body interaction. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Italy

    Google Scholar 

  9. Buschmann T, Lohmeier S, Ulbrich H, Pfeiffer F (2005) Optimization based gait pattern generation for a biped robot. In Proceedings of the IEEE-RAS conference on humanoid robots (humanoids), USA

    Google Scholar 

  10. Buss SR. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. Unpublished survey. http://math.ucsd.edu/sbuss/ResearchWeb/ikmethods/index.html

    Google Scholar 

  11. Chaumette F, Marchand E (2001) A redundancy-based iterative approach for avoiding joint limits: application to visual servoing. IEEE Trans Robotics Autom, 17(5):52–87

    Article  Google Scholar 

  12. Chestnutt J, Nishiwaki K, Kuffner J, Kagami S (2007) An adaptive action model for legged navigation planning. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots (humanoids), USA

    Google Scholar 

  13. Chiaverini S (1997) Singularity-robust task priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans Robotics Autom, 13(3)

    Article  Google Scholar 

  14. Choi SI, Kim BK (2000) Obstace avoidance control for redundant manipulators using collidability measure. Robotica 18:143–151

    Article  Google Scholar 

  15. Colby CL (1998) Action-oriented spatial reference frames in cortex. Neuron 20(1):15–24

    Article  Google Scholar 

  16. Dariush B, Gienger M, Arumbakkam A, Goerick C, Zhu Y, Fujimura K (2008) Online and markerless motion retargetting with kinematic constraints. In Proceedings of the IEEE international conference on intelligent robots and systems, France

    Google Scholar 

  17. English JD, Maciejewski AA (2000) On the implementation of velocity control for kinematically redundant manipulators. IEEE Trans Sys Man Cybern:233–237

    Google Scholar 

  18. Gienger M, Janssen H, Goerick C (2005) Task-oriented whole body motion for humanoid robots. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots (humanoids), USA

    Google Scholar 

  19. Gienger M, Janssen H, Goerick C (2006) Exploiting task intervals for whole body robot control. In Proceedings of the IEEE/RSJ international conference on intelligent robot and systems (IROS), China

    Google Scholar 

  20. Gienger M, Toussaint M, Goerick C (2008) Task maps in humanoid robot manipulation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), France

    Google Scholar 

  21. Gienger M, Toussaint M, Jetchev N, Bendig A, Goerick C (2008) Optimization of fluent approach and grasp motions. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots (humanoids), Korea

    Google Scholar 

  22. Gienger M, Bolder B, Dunn M, Sugiura H, Janssen H, Goerick C (2007) Predictive behavior generation - a sensor-based walking and reaching architecture for humanoid robots. Informatik Aktuell (AMS): 275–281, Germany, Springer (eds. Berns K, Luksch T)

    Google Scholar 

  23. Goerick C, Bolder B, Janssen H, Gienger M, Sugiura H, Dunn M, Mikhailova I, Rodemann T, Wersing H, Kirstein S (2007) Towards incremental hierarchical behavior generation for humanoids. In Proceedings of the IEEE-RAS international conference on humanoid robots (humanoids), USA

    Google Scholar 

  24. Guan Y, Yokoi K (2006) Reachable boundary of a humanoid robot with two feet fixed on the ground. In Proceedings of the international conference on robotics and automation (ICRA), USA, pp 1518 – 1523

    Google Scholar 

  25. Guan Y, Yokoi K, Xianmin Zhang X (2008) Numerical methods for reachable space generation of humanoid robots. Int J Robotics Res 27(8):935–950

    Article  Google Scholar 

  26. Guilamo L, Kuffner J, Nishiwaki K, Kagami S (2005) Efficient prioritized inverse kinematic solutions for redundant manipulators. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Canada

    Google Scholar 

  27. Harada K, Kajita S, Kaneko K, Hirukawa H (2004) An analytical method on real-time gait planning for a humanoid robot. In Proceedings of the IEEE-RAS international conference on humanoid robots (humanoids), USA

    Google Scholar 

  28. Haschke R, Steil JJ, Steuwer I, Ritter H (2005) Task-oriented quality measures for dextrous grasping. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (CIRA), Finland

    Google Scholar 

  29. Haschke R, Weitnauer E, Ritter H (2008) On-line planning of time-optimal, jerk-limited trajectories. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS), France

    Google Scholar 

  30. Heim A, van Stryk O (1999) Trajectory optimization of industrial robots with application to computer-aided robotics and robot controllers. Optimization 47:407–420

    Article  Google Scholar 

  31. Hirose M, Haikawa Y, Takenaka T, Hirai K (2001) Development of humanoid robot asimo. In Workshop of the IEEE/RSJ international conference on intelligent robots and systems (IROS), USA

    Google Scholar 

  32. Ijspeert A, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA), USA

    Google Scholar 

  33. Ijspeert A, Nakanishi J, Schaal S (2003) Learning attractor landscapes for learning motor primitives. Advances in Neural Information Processing Systems 15. MIT Press, Cambridge MA, USA, pp 1523–1530

    Google Scholar 

  34. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), USA

    Google Scholar 

  35. Kavraki L, Svestka P, Latombe J, Overmars M (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robotics Automa (12):566–580

    Google Scholar 

  36. Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Int J Robotics Autom, RA-3(1):43–53

    Article  Google Scholar 

  37. Kuffner J, LaValle S (2000) RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE international conference of robotics and automation (ICRA), USA

    Google Scholar 

  38. Latombe JC (1991) Robot motion planning. Kluwer, Boston, MA, USA

    Google Scholar 

  39. Laumond JP (1998) Robot motion planning and control. Springer-Verlag, Berlin, Germany. Available online at http://www.laas.fr/∼jpl/book.html

    Book  Google Scholar 

  40. LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge, UK. Available at http://planning.cs.uiuc.edu

    Book  MATH  Google Scholar 

  41. Lebedev D, Klanke S, Haschke R, Steil J, Ritter H (2006) Dynamic path planning for a 7-dof robot arm. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS), China

    Google Scholar 

  42. Liégeois A (1977) Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans Sys Man Cybern, SMC-7 (12)

    Google Scholar 

  43. Maciejewski AA (1990) Dealing with the ill-conditioned equations of motion for articulated figures. IEEE Computat Graphics Applic, 10(3):63–71

    Article  Google Scholar 

  44. Marchand E, Chaumette F, Rizzo A (1996) Using the task function approach to avoid robot joint limits and kinematic singularities in visual servoing. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Japan

    Google Scholar 

  45. Michel P, Chestnutt J, Kuffner J, Kanade T (2005) Vision-guided humanoid footstep planning for dynamic environments. In Proceedings of the IEEE-RAS conference on humanoid robots (humanoids), USA

    Google Scholar 

  46. Miller AT, Knoop S, Christensen HI, Allen PK (2003) Automatic grasp planning using shape primitives. In Proceedings of the IEEE international conference of robotics and automation (ICRA), Taiwan

    Google Scholar 

  47. Murray RM, Li Z, Sastry SS (1994) Robotic manipulation. CRC Press, FL, USA

    MATH  Google Scholar 

  48. Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Neurobiology 91:7534–7538

    Google Scholar 

  49. Nakamura Y (1991) Advanced robotics: redundancy and optimization. Addison-Wesley

    Google Scholar 

  50. Nakamura Y, Hanafusa H (1987) Optimal redundancy control of robot manipulators. Int J Robotics Res (6)

    Google Scholar 

  51. Pfeiffer F (2008) Mechanical system dynamics. Springer Verlag

    Google Scholar 

  52. Platt R, Fagg AH, Grupen R (2006) Improving grasp skills using schema structured learning. In Proceedings of the international conference on development and learning (ICDL), India

    Google Scholar 

  53. Mas R, Boulic R, Thalmann D (1997) Interactive identification of the center of mass reachable space for an articulated manipulator. In Proceedings of the IEEE international conference of advanced robotics (ICAR), USA

    Google Scholar 

  54. Schaal S (2003) Movement planning and imitation by shaping nonlinear attractors. In Proceedings of the 12th Yale workshop on adaptive and learning systems, Yale University, USA

    Google Scholar 

  55. Schaal S, Peters J, Nakanishi J, Ijspeert AJ (2003) Control, planning, learning, and imitation with dynamic movement primitives. Workshop on bilateral paradigms on humans and humanoids, IEEE international conference on intelligent robots and systems (IROS), USA

    Google Scholar 

  56. Schlemmer K, Gruebel G (1998) Real-time collision-free trajectory optimization of robot manipulators via semi-infinite parameter optimization. Int J Robotics Res, 17(9):1013–1021

    Article  Google Scholar 

  57. Schwammkrug D, Walter J, Ritter H (1999) Rapid learning of robot grasping positions. In Proceedings of the international symposion on intelligent robotics systems (SIRS), Portugal

    Google Scholar 

  58. Steil JJ, Roethling F, Haschke R, Ritter H (2004) Situated robot learning for multi-modal instruction and imitation of grasping. Robotics Autonomous Sys 47 (Special issue on robot learning by demonstration):129–141

    Article  Google Scholar 

  59. Suárez R, Roa M, Cornellà J (2006) Grasp quality measures. Technical Report IOC-DT-P 2006-10, Universitat Politècnica de Catalunya, Institut d’Organització i Control de Sistemes Industrials

    Google Scholar 

  60. Sugihara T, Nakamura Y (2002) Whole-body cooperative balancing of humanoid robot using COG jacobian. In Proceedings of the IEEE/RSJ international conference on intelligent robot and systems (IROS), Switzerland

    Google Scholar 

  61. Sugiura H, Gienger M, Janssen H, Goerick C (2007) Real-time collision avoidance with whole body motion control for humanoid robots. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS), USA

    Google Scholar 

  62. Toussaint M, Gienger M, Goerick C (2007) Optimization of sequential attractor-based movement for compact movement representation. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots (humanoids), USA

    Google Scholar 

  63. Yoshida E, Belousov I, Esteves C, Laumond JP (2005) Humanoid motion planning for dynamic tasks. In Proceedings of the IEEE-RAS/RSJ international conference on humanoid robots, USA

    Google Scholar 

  64. Zacharias F, Borst C, Beetz M, Hirzinger G (2008) Positioning mobile manipulators to perform constrained linear trajectories. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS), France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gienger, M., Toussaint, M., Goerick, C. (2010). Whole-body Motion Planning – Building Blocks for Intelligent Systems. In: Harada, K., Yoshida, E., Yokoi, K. (eds) Motion Planning for Humanoid Robots. Springer, London. https://doi.org/10.1007/978-1-84996-220-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-220-9_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-219-3

  • Online ISBN: 978-1-84996-220-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics