Skip to main content

Trends of Radiatively Important Trace Gases and their Relationship to Tropospheric Photochemistry

  • Conference paper
Atmospheric Radiation
  • 128 Accesses

Abstract

Infrared-absorbing trace gases other than CO2 are accumulating in the atmosphere. The climatic effect of these gases will be comparable and will add to that expected from CO2. Tropospheric chemistry plays an important role in the budgets and trends of two radiatively important trace gases, i. e., CH4 and tropospheric O3.

The observed trend of CH4 indicates that there has been a factor of two increases in its concentration in the last 350 years and the rate of increase has become greater in the last century. The increase in CH4 is most likely due to increases in its sources, such as human activities in agriculture and energy use. Changes in the photochemical sink of CH4 may also contribute.

There is strong evidence that tropospheric O3 in industrial countries has increased significantly due to anthropogenic emissions of NOx and hydrocarbons. However, the trend of tropospheric O3 has not been quantitatively established because there are large spatial and temporal variations in the distribution of O3. More extensive measurements are needed to quantify this trend.

In this report we have identified the major photochemical processes that control the budgets and trends of CH4 and tropospheric O3. It is shown that human activities may have significantly perturbed the atmospheric distributions of CO, NOx, O3, nonmethane hydrocarbons, and CH4. The observed trends of O3 and CH4 are qualitatively consistent with the current understanding of their photochemistry and budgets. However, models with realistic transport and photochemical processes need to be developed to evaluate and predict the trends quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Aldaz, L., 1969: Flux measurements of atmospheric ozone over land and water. J. Geophys, Res., 74, 6943–6946.

    Article  Google Scholar 

  • Angell, J. K. and J. Korshover, 1983: Global variation in total ozone and layermean ozone: an update through 1981. J. of Climate and Applied Meteorology, 22, 1611–1627.

    Article  CAS  Google Scholar 

  • Blake, D. R., E W. Mayer, S. C. Tyler, V. Makide, D. C. Montague and F. S. Rowland, 1982: Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett., 9, 477–480.

    Article  CAS  Google Scholar 

  • Bojkov, R. D., 1986: Surface ozone during the second half of the nineteenth century. J. Climate and Applied Met., 25, 343–352.

    Article  Google Scholar 

  • Chameides, W. L., S. C. Liu and R. J. Cicerone, 1977: Possible variations in atmospheric methane. J. Geophys. Res., 82, 1788–1795.

    Google Scholar 

  • Chemical Manufacturers Association, 1983: 1982 World Production and Sales of Flurocar-bons FC-11 and FC-12. 29 pp., Washington, D. C.

    Google Scholar 

  • Colbeck, I. and R. M. Harrison, 1985: Dry deposition of ozone: Some measurements of deposition velocity and of vertical profiles to 100 meters. Atmos. Environ., 19, 1807–1818.

    Article  CAS  Google Scholar 

  • Costanza, V. and J. H. Seinfeld, 1982: Optimal emission control strategies for photochemical smog. Environ. Sci., and Tech., 16, 98–101.

    Article  CAS  Google Scholar 

  • Cox, R. A., A. E. J. Eggleton, R. G. Derwent, J. E. Lovelock and D. E. Pack, 1975. Long-range transport of photochemical ozone in North-western Europe. Nature, 255, 118–121.

    Article  CAS  Google Scholar 

  • Craig, H. and C. C. Chou, 1982: Mathane: The record in polar ice cones. Geophys. Res. Lett., 9, 1221–1224.

    Article  CAS  Google Scholar 

  • Cunnold, D., R. Prinn, R. Rasmussen, P. Simmonds, F. Alyea, C. Cardelino and A. Crawford, 1983: The Atmospheric Lifetime Experiment, 4. Results for CF2Cl2 based on 3 years of data. J. Geophys. Res., 88, 8401–8414.

    Article  CAS  Google Scholar 

  • Danielsen E. F. and V. A. Mohnen, 1977: Project dust storm report: ozone transport, in situ measurements, and meteorological analyses of tropopause folding. J. Geophys. Res., 82, 5867–5877.

    Article  CAS  Google Scholar 

  • Delany, A. C., P. J. Crutzen, P. Haagenson, S. Walters and A. F. Wartburg, 1985: Photochemically produced ozone in the emissions from large-scale tropical vegetation fires. J. Geophys. Res., 90, 2425–2429.

    Article  CAS  Google Scholar 

  • Ehhalt, D. H., 1974: The atmospheric cycle of methane. Tellus, 26, 58–70.

    Article  CAS  Google Scholar 

  • Fishman, J., S. Solomon and P. J. Crutzen, 1979: Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone. Tellus, 31, 432–446.

    Article  CAS  Google Scholar 

  • Fishman, J., F. M. Vukovich, E. V. Browell, 1985: The photochemistry of synopticscale ozone budget. J. of Atm. Chemistry, 3, 299–320.

    Article  CAS  Google Scholar 

  • Hov, O., Ozone in the troposphere: high level pollution. Ambio, 13, 73–79.

    Google Scholar 

  • Khalil, M. A. K. and R. A. Rasmussen, 1983: Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88, 5131–5144.

    Article  CAS  Google Scholar 

  • Lenschow, D. H., R. Pearson, Jr., and B.B. Stankor, 1982: Measurements of ozone vertical flux to ocean and forest. J. Geophy. Res., 87, 8833–8837.

    Article  CAS  Google Scholar 

  • Levy, A., 1876: Dosage de l’ozone de l’air. Bull. Menssuel Observ. de Montsouris, 5, 57–61.

    Google Scholar 

  • Liu, M.K., R. E. Morris and J. P. Killus, 1984: Development of a regional oxidant model and application to the north-eastern United States. Atmos. Environ., 16, 1145.

    Article  Google Scholar 

  • Liu, S. C., D. Kley, M. McFarland, J. D. Mahlman and H. Levy II, 1980: On the origin of tropospheric ozone. J. Geophys. Res., 85, 7546–7552.

    Article  CAS  Google Scholar 

  • Liu, S. C., M. Trainer, F. C. Fehsenfeld, D.D. Parrish, E. J. Williams, D. W. Fahey, G. Hubler and P. C. Murphy, 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res., in press.

    Google Scholar 

  • Logan, J. A., Nitrogen oxides in the troposphere: 1983: Global and regional budgets. J. Geophys. Res., 88, 10785–10807.

    Article  CAS  Google Scholar 

  • Logan, J. A., 1985: Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence. J. of Geophys, Res., 90, 10463–10482.

    Article  Google Scholar 

  • Mahlman, J. D., H. Levy II and W. Moxim, 1980: Three-dimensional tracer structureand behavior as simulated in two ozone precursor experiments. J. At-mos. Sci., 37, 655–685.

    Article  Google Scholar 

  • Noxon, J. E., 1983: NO3 and NO2 in the mid-pacific troposphere. J. Geophys. Res., 88, 11017–11021.

    Article  CAS  Google Scholar 

  • Oltmans, S. J. and W. D. Komhyr, 1986: Surface ozone distributions and variations from 1973–1984 measurements at the NOAA/GMCC baseline observatories. J. Geophys. Res., 91, 5229–5236.

    Article  CAS  Google Scholar 

  • Platt, U., A. M. Winer, H. W. Biermann, R. Atkinson, J. N. Pitts, Jr., 1984: Measurement of nitrate radical concentrations in continental air. Environ. Sci. Technol., 18, 365–369.

    Article  CAS  Google Scholar 

  • Ramanathan, U., R. J. Cicerone, H. B. Singh and J. T. Kiehl, 1985: Trace gas trends and their potential role in climate change, J. Geophys. Res., 90, 5547–5566.

    Article  CAS  Google Scholar 

  • Rasmussen, R. A. and M. A. K. Khalil, 1981: Atmospheric methane: Trends and seasonal cycles. J. Geophys. Res., 86, 9826–9832.

    Article  CAS  Google Scholar 

  • Rasmussen, R. A. and M. A. K. Khalil, 1984: Atmospheric methane in the recent and ancient atmospheres; Concentrations, trends, and interhemispheric gradient. J. Geophys. Res., 89, 11599–11605.

    Article  CAS  Google Scholar 

  • Research Triangle Institute, 1975: Investigations of rural oxidant levels as related to urban hydrocarbon control strategies. EPA-450/3-75-036, Environmental Protection Agency, Research Triangle Park, N. C., 359 pp.

    Google Scholar 

  • Sakamaki, F., M. Okuda, H. Akimoto and H. Yamazaki, 1982: Computer modeling study of photochemical ozone formation in the propene-nitrogen oxides-dry air system, generalized maximum ozone isopleth. Environ. Sci. and Tech., 16, 45–52.

    Article  CAS  Google Scholar 

  • Sze, N. D., 1977: Anthropogenic CO emissions; Implications for the Atmospheric CO-OH-CH4 Cycles. Science, 195, 673–675.

    Article  CAS  Google Scholar 

  • Thompson, A. M. and R. J. Cicerone, 1986: Atmospheric CH4, CO, and OH from 1860 to 1985. Nature, 321, 148–150.

    Article  CAS  Google Scholar 

  • U. S. EPA, 1977: Uses, limitations and technical basis of procedures for quantifying relationships between photochemical oxidants and precursors. US Environmental Protection Agency, Research Triangle Park, N. C., 1977; EPA 450/2-77-021a.

    Google Scholar 

  • Volz, A., D. Kley, H. P. Kley and S. Gilge, 1986: A critical evaluation of the Montsouris series of O3 measurements from 1876 to 1907, EOS, Transactiona, American Geophysical Union, 67, 877–878.

    Google Scholar 

  • Wang, W. C., D.J. Wuebbles, W. M. Washington, R. G. Isaacs and G. Molnar, 1986: Trace gases and other potential perturbations to global climate. Reviews of Geophysics, 24, 110–140.

    Article  Google Scholar 

  • Weiss, R. F., 1981: The temporal and spatial distribution of tropospheric nitrous oxide. J. Geophys. Res., 86, 7185–7195.

    Article  CAS  Google Scholar 

  • Wesely, M. L., 1983: Turbulent transport of ozone to surfaces common in the eastern half of the United States. Trace Atmospheric Constituents, Edited by S. E. Schwartz, J. Wiley and Sons, 345-370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Meteorological Society

About this paper

Cite this paper

Liu, S.C. (1987). Trends of Radiatively Important Trace Gases and their Relationship to Tropospheric Photochemistry. In: Liou, KN., Xiuji, Z. (eds) Atmospheric Radiation. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-18-8_100

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-18-8_100

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-18-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics