Skip to main content

Bias in a Solar Constant Determination by the Langley Method Due to Aerosols

  • Conference paper
Atmospheric Radiation
  • 128 Accesses

Abstract

The vertical distribution of atmospheric aerosols generally differs from the vertical distribution of the molecular atmosphere. The resulting differences in the optical air masses of the aerosol and molecular constituents lead to a bias error in the solar constant inferred by the Langley method. Volcanic aerosols injected into the lower stratosphere can lead to large bias errors. These can be reduced significantly by using a lidar to provide relatively crude measurements of the vertical distribution of the aerosol extinction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abbot, C. G., F. E. Fowle and L. B. Aldrich, 1922: New evidence on the intensity of solar radiation outside the atmosphere. Am. Astrophys. Obs. Smithson. Inst., 4, 323.

    Google Scholar 

  • DeLuisi, J., T. Derfoor, K. Coulson and F. Fernald, 1985: Lidar observations of stratospheric aerosol over Mauna Loa Observatory: 1982–1983. NOAA Data Report ERL ARL-5.

    Google Scholar 

  • Elterman, L., 1966: An atlas of aerosol attenuation and extinction profiles for the troposphere and stratosphere. AFCRL-66-828.

    Google Scholar 

  • ———, 1970: Vertical attenuation model with eight surface meteorology ranges 2 to 13 kilometers. AFCRL-70-0200.

    Google Scholar 

  • Kasten, F., 1966: A new table and approximation formula for the relative optical air mass. Arch. Meteorol. Geophys. Bioklimatol., Ser. B, 14, 206.

    Article  Google Scholar 

  • McCormick, M. P., 1985: SAGE aerosol measurements. NASARef. Publ. 1144.

    Google Scholar 

  • Reagan, J. A., M. V. Apte, T. V. Bruhns and O. Youngbluth, 1984: Lidar and balloons-Some cascade impactor measurements of aerosols: A case study. Aerosol Sci. Technol., 3, 259.

    Article  CAS  Google Scholar 

  • Szymber, R. J. and W. D. Sellers, 1985: Atmospheric turbidity at Tucson, Arizona, 1956–1983: Variations and their causes. J. Clim. Appl. Meteorol., 24, 725.

    Article  Google Scholar 

  • U. S. Standard Atmosphere Supplements, 1966: Prepared under sponsorship of ESSA and NASA, U. S. Air Force.

    Google Scholar 

  • Young, A. T., 1974: Observation technique and data reduction. In Methods of Experimental Physics, Astrophysics, N. P. Carleton, Ed., Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 American Meteorological Society

About this paper

Cite this paper

Schotland, R.M., Lea, T.K. (1987). Bias in a Solar Constant Determination by the Langley Method Due to Aerosols. In: Liou, KN., Xiuji, Z. (eds) Atmospheric Radiation. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-18-8_95

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-18-8_95

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-18-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics