Skip to main content

Quasi-Stationary Convective Events

  • Chapter
Mesoscale Meteorology and Forecasting

Abstract

Quasi-stationary, or very slowly moving, storm systems are of particular interest to the forecaster, because they frequently produce heavy rainfall and flash floods. These convective weather systems are composed at any moment of many individual storms, all in various stages of their life cycles. The individual storms frequently have trajectories that carry them repeatedly over the same region, producing pulsating heavy rains that quickly cause streams and rivers to overflow their banks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks, H. B., 1946: A summary of some radar thunderstorm observations. Bull. Amer. Meteor. Soc., 27, 557–563.

    Google Scholar 

  • Brown, R. A., D. W. Burgess, and K. C. Crawford, 1973: Twin tornado cyclones within a severe thunderstorm: Single Doppler radar observations. Weather-wise, 26, 63–71.

    Article  Google Scholar 

  • Browning, K. A., and F. H. Ludlam, 1982: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.

    Article  Google Scholar 

  • Byers, H. R., 1942: Nonfrontal thunderstorms. Dept. Meteor., Univ. of Chicago, Misc. Rep. 3, 26 pp.

    Google Scholar 

  • Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm. U.S. Government Printing Office, Washington, D.C., 287 pp.

    Google Scholar 

  • Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 1–17.

    Article  Google Scholar 

  • Charba, J., and Y. Sasaki, 1971: Structure and movement of the severe thunderstorms of 3 April 1964 as revealed from radar and surface mesonetwork data analysis. J. Meteor. Soc. Japan, 49, 191–213.

    Google Scholar 

  • Cotton, W. R., R. L. George, and K. R. Knupp, 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part I: Evolution of the storm-initiating mesoscale circulation. J. Atmos. Sci., 39, 328–342.

    Article  Google Scholar 

  • Espy, J. P., 1861: The Philosophy of Storms. Little, Brown, 341 pp.

    Google Scholar 

  • Fujita, T., and H. Grandosa, 1968: Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 25, 416–439.

    Article  Google Scholar 

  • Goldman, J. L., and E. M. Wilkins, 1973: Drag experiments with cylinders of varying roughness related to flow around thunderstorm cells. J. Geophys. Res., 78, 913–919.

    Article  Google Scholar 

  • Green, J. S. A., F. H. Ludlam, and T. F. R. Mcllveen, 1966: Isentropic relative flow analysis and the parcel theory. Quart. J. Roy. Meteor. Soc., 92, 210–219.

    Article  Google Scholar 

  • Haman, K. E., 1976: On the airflow and motion of quasi-steady convective storms. Mon. Wea. Rev., 104, 49–56.

    Article  Google Scholar 

  • Haman, K. E., 1978: On the motion of a three-dimensional quasi-steady convective storm in shear. Mon. Wea. Rev., 106, 1622–1626.

    Article  Google Scholar 

  • Hammond, G. R., 1967: Study of a left-moving thunderstorm of 23 April 1964. Tech. Memo. IERTM—NSSL 31, ESSA, Norman, Oklahoma, (NTIS#PB174681), 75 pp.

    Google Scholar 

  • Hitschfeld, W., 1967: The motion and erosion of convective storms in vertical wind shear. J. Meteor., 17, 270–282.

    Article  Google Scholar 

  • Hoxit, L. R., R. A. Maddox, C. F. Chappell, F. L. Zuckerberg, H. M. Mogil, I. Jones, D. R. Greene, R. E. Safiie, and R. A. Scofield, 1978: Meteorological Analysis of the Johnstown, Pennsylvania Flash Flood, 19–20 July 1977. NOAA Tech. Rep. ERL 401—APCL 43 (NTIS#PB-297412/9GA), 71 pp.

    Google Scholar 

  • Humphreys, W. J., 1914: The thunderstorm and its phenomena. Mon. Wea. Rev., 42, 348–380.

    Article  Google Scholar 

  • Humphreys, W. J., 1940: Physics of the Air (3rd ed.). McGraw Hill, New York, 676 PP.

    Google Scholar 

  • Klemp, J.B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1110.

    Article  Google Scholar 

  • Knupp, K. R., and W. R. Cotton, 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure. J. Atmos. Sci., 39, 343–358.

    Article  Google Scholar 

  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and meso-cyclone structure as related to tornado-genesis. Mon. Wea. Rev., 107, 1184–1197.

    Article  Google Scholar 

  • Ludlam, F. H., 1963: Severe local storms: A review. In Severe Local Storms, Meteor. Monogr. American Meteorological Society, Boston, 1–28.

    Google Scholar 

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.

    Article  Google Scholar 

  • Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson and Rapid City floods. Mon. Wea. Rev., 106, 375–389.

    Article  Google Scholar 

  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-a-scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115–123.

    Article  Google Scholar 

  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180–188.

    Article  Google Scholar 

  • Merritt, J. H., and J. M. Fritsch, 1984: On the movement of the heavy precipitation areas of mid-latitude mesoscale convective complexes. Preprints, 10th Conference on Weather Forecasting and Analysis, Clearwater. American Meteorological Society, Boston, 529–536.

    Google Scholar 

  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336–353.

    Article  Google Scholar 

  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373–394.

    Article  Google Scholar 

  • Newton, C. W., and J. C. Fankhauser, 1964: On the movements of convective storms, with emphasis on size discrimination in relation to water-budget requirements. J. Appl. Meteor., 3, 651–668.

    Article  Google Scholar 

  • Newton, C. W., and J. C. Fankhauser, 1975: Movement and propagation of multicellular convective storms. Pure Appl. Geophys., 113, 747–784.

    Article  Google Scholar 

  • Newton, C. W., and S. Katz, 1958: Movement of large convective rainstorms in relation to winds aloft. Bull. Amer. Meteor. Soc., 39, 129–136.

    Google Scholar 

  • Newton,C. W., and H. R. Newton, 1959: Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteor., 16, 483–496.

    Article  Google Scholar 

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.

    Article  Google Scholar 

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.

    Article  Google Scholar 

  • Schlesinger, R. E., 1978: A threedimensional numerical model of an isolated thunderstorm. Part I: Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690–713.

    Article  Google Scholar 

  • Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated thunderstorm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–420.

    Article  Google Scholar 

  • Weaver, J. F., 1979: Storm motion as related to boundary-layer convergence. Mon. Wea. Rev., 107, 612–619.

    Article  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    Article  Google Scholar 

  • Wilhelmson, R. B., and C. S. Chen, 1982: Simulations of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1456–1465.

    Article  Google Scholar 

  • Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35, 1974–1986.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Chappell, C.F. (1986). Quasi-Stationary Convective Events. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_13

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics