Skip to main content

Part of the book series: Meteorological Monographs ((METEOR,volume 10))

Abstract

The conservation and distribution of water substance in atmospheric circulations is considered within a frame of continuity principles, model air flows, and models of microphysical processes. The simplest considerations of precipitation involve its vertical distribution in an updraft column, where condensate appears immediately as precipitation with uniform terminal fallspeed. The study also treats steady two-dimensional air circulations in which time-dependent distributions of water vapor, cloud and precipitation respond to model microphysical processes.

The approach throughout is essentially kinematic, although results provide numerous insights into the dynamical properties of a cloudy or stormy atmosphere. Water distributions are explained in relation to the air’s horizontal divergence, vertical velocity and compressibility, and physical pictures are presented frequently. The findings are compared with various observations on precipitating weather systems.

Detailed summaries of this paper by Sections are presented in Sections 1 and 15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., and Irene Stegun, 1964: Handbook of Mathematical Functions. Natl. Bur. Stds. Appl. Math. Ser., No. 55, Washington, D. C., U. S. Gov’t. Printing Office. (see pp. 959 and 979 ff.).

    Google Scholar 

  • Ackerman, B., 1959: The variability of liquid water content of tropical cumuli. J. Meteor., 16, 191–198.

    Article  Google Scholar 

  • Arnason, G., R. S. Greenfield and A. Newburg, 1968: A numerical experiment in dry and moist convection including the rain stage. J. Atmos. Sci., 25, 404–415.

    Article  Google Scholar 

  • Atlas, D., 1953a: Drop size history during a shower. J. Meteor., 10, 291–295.

    Article  Google Scholar 

  • Atlas, D., 1953b: Optical extinction by rainfall. J. Meteor., 10, 486–489.

    Article  Google Scholar 

  • Atlas, D., 1955: The radar measurement of precipitation growth. Sc.D. thesis, Massachusetts Institute of Technology (see Appendix).

    Google Scholar 

  • Austin, P. M., and A. C. Bemis, 1950: Quantitative study of the ‘bright band’ in radar precipitation echoes. J. Meteor., 7, 145–151.

    Article  Google Scholar 

  • Bannon, J. H., 1948: The estimation of vertical currents from the rate of rainfall. Quart. J. Roy. Meteor. Soc., 74, 57–66.

    Article  Google Scholar 

  • Barnes, S. L., 1969: Some aspects of a severe right-moving thun derstorm deduced from mesonetwork rawinsonde observations. Preprints Sixth Conf. Severe Local Storms, Boston-Amer. Meteor. Soc., 24–31.

    Google Scholar 

  • Battan, L. J., 1959: Radar Meteorology. University of Chicago Press, 161 pp.

    Google Scholar 

  • Battan, L. J., and J. B. Theiss, 1968: Measurement of draft speeds in convective clouds by means of pulsed-Doppler radar. Proc. 13th Radar Meteor. Conf., Boston, Amer. Meteor. Soc., 26–29.

    Google Scholar 

  • Berry, E. X, 1968a: Modification of the warm rain process. Proc. First Natl. Conf. Wea. Modification, Boston, Amer. Meteor. Soc., 81–85.

    Google Scholar 

  • Berry, E. X, 1968b: A parameterization of the collection of cloud drops Proc. Intern. Conf. Cloud Physics, Toronto, 111–114.

    Google Scholar 

  • Birstein, S. J., 1954: Absorption studies of heterogeneous phase transitions. Geophys. Res. Papers, No. 32, Air Force Cambridge Research Center, Bedford, Mass., 37 pp.

    Google Scholar 

  • Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.

    Article  Google Scholar 

  • Braham, R. R., Jr., 1968: Meteorological bases for precipitation development Bull. Amer. Meteor. Soc., 49, 343–353.

    Google Scholar 

  • Browning, K. A., 1963: The growth of large hail within a steady updraught. Quart. J. Roy. Meteor. Soc., 89, 490–506.

    Article  Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    Article  Google Scholar 

  • Browning, K. A., 1965: Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22, 669–677.

    Article  Google Scholar 

  • Browning, K. A., and D. Atlas, 1965: Initiation of precipitation in vigorous convective clouds. J. Atmos. Sci., 22, 678–683.

    Article  Google Scholar 

  • Byers, H., 1951: Thunderstorms. Compendium of Meteorology, Boston, Amer. Meteor. Soc., 681–693.

    Google Scholar 

  • Byers, H., 1965: Elements of Cloud Physics. University of Chicago Press, 191 pp.

    Google Scholar 

  • Byers, H., and R. R. Braham, Jr., 1949: The Thunderstorm. Washington, D. C., U. S. Gov’t Printing Office, 287 pp.

    Google Scholar 

  • Carte, A. E., 1968: Mine shafts as a cloud physics facility. Proc. Intern. Conf. Cloud Physics, Toronto, 384–388.

    Google Scholar 

  • Cohen, A., 1933: An Elementary Treatise on Differential Equations. New York, Heath & Co., 337 pp.

    Google Scholar 

  • Cole, A. E., 1957: Surface rates of precipitation. Handbook of Geophysics, Air Force Cambridge Research Laboratories, Bedford, Mass., pp. 6–1 to 6–5 (see Fig. 6–4, p. 6–3 ).

    Google Scholar 

  • Courant, R., 1961: Cauchy’s problem for hyperbolic quasi-linear systems of first-order partial differential equations in two. independent variables. Commun. Pure Appt. Math., 14, 257–263.

    Article  Google Scholar 

  • Das, P., 1964: Role of condensed water in the life cycle of a convective cloud. J. Atmos. Sci., 21, 404–418.

    Article  Google Scholar 

  • Das, P., 1968: The unsaturated downdraft. Proc. Intern. Conf. Cloud Physics, Toronto, 592–596.

    Google Scholar 

  • Doherty, L. H., 1964: Z-R relationships deduced from forward scatter Doppler measurements. J. Atmos. Sci., 21, 683–697.

    Google Scholar 

  • Donaldson, R. J., Jr., 1965: Methods for identifying severe thunderstorms by radar: A guide and bibliography. Bull. Amer. Meteor. Soc., 46, 174–193.

    Google Scholar 

  • Douglas, R. H., K. L. S. Gunn and J. S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14, 95–114.

    Article  Google Scholar 

  • Fankhauser, J. C., 1966: Some physical and dynamical aspects of a singular cumulonimbus observed by instrumented aircraft and radar. Proc. Twelfth Conf. Radar Meteor., Boston, Amer. Meteor. Soc., 405–413.

    Google Scholar 

  • Fawbush, E. J., and R. C. Miller, 1954: The types of air masses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154–165.

    Google Scholar 

  • Flora, S. D., 1956: Hailstorms of the United States. University of Oklahoma Press (see p. 7 and bibliography), 201 pp.

    Google Scholar 

  • Freeman, J. C., 1968: Importance of theoretical discontinuities in liquid water content in interpreting radar echoes of rainfall. Proc. Thirteenth Conf. Radar Meteor., Boston, Amer. Meteor. Soc., 140–143.

    Google Scholar 

  • Goldman, J., 1968: The high speed updraft—The key to the severe thunderstorm. J. Atmos. Sci., 25, 222–248.

    Article  Google Scholar 

  • Gunn R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243–248.

    Article  Google Scholar 

  • Haman, L., 1968: On the accumulation of large raindrops by Langmuir chain reaction in an updraft. Proc. Intern. Conf. Cloud Physics, Toronto, 345–349.

    Google Scholar 

  • Hamilton, P. M., 1966: Vertical profiles of total precipitation in shower situations. Quart. J. Roy. Meteor. Soc., 92, 346–362.

    Article  Google Scholar 

  • Hammond, G. R., 1967: Study of a left-moving thunderstorm of 23 April 1964. Tech. Memo No. 31, National Severe Storms Laboratory, Norman, Okla., 75 pp.

    Google Scholar 

  • Harper, W. G., 1957: Variation with height of rainfall below the melting layer. Quart. J. Roy. Meteor. Soc., 83, 368–371.

    Article  Google Scholar 

  • Haurwitz, B., 1941: Dynamic Meteorology. New York, McGraw-Hill, 129–130.

    Google Scholar 

  • Houghton, H. G., 1950: A preliminary quantitative analysis of precipitation mechanisms. J. Meteor., 7, 363–369.

    Article  Google Scholar 

  • Houghton, H. G., 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meteor., 7, 850–859.

    Article  Google Scholar 

  • Isaacson, E., and H. B. Keller, 1966: Analysis of Numerical Methods. New York, Wiley and Sons, 541 pp.

    Google Scholar 

  • Iribarne, J. V., 1968: Development of accumulation zones. Proc. Intern. Conf. Cloud Physics, Toronto, 350–354.

    Google Scholar 

  • Kessler, E., 1957: Radar synoptic analysis of an intense winter storm. Geophys. Res. Papers, No. 56, Air Force Cambridge Research Laboratories, Bedford, Mass., 218 pp. (Also, Doctoral dissertation, Massachusetts Institute of Technology. )

    Google Scholar 

  • Kessler, E., 1959: Kinematical relations between wind and precipitation distributions. J. Meteor., 16, 630–637.

    Article  Google Scholar 

  • Kessler, E., 1961: Kinematical relations between wind and precipitation distributions. J. Meteor., 18, 510–525.

    Article  Google Scholar 

  • Kessler, E., 1963: Elementary theory of associations between atmospheric motions and distributions of water content. Mon. Wea. Rev., 91, 13–27.

    Article  Google Scholar 

  • Kessler, E., 1966: Lightning discharge and precipitation. Quart. J. Roy. Meteor. Soc., 92, 308–310.

    Article  Google Scholar 

  • Kessler, E., and D. Atlas, 1959: Model precipitation distributions. Aero/Space Eng., 18, 36–40.

    Google Scholar 

  • Kessler, E., K. Gray and J. T. Dooley, 1968: Toward a quantitative radar climatology. Proc. Thirteenth Radar Meteor. Conf., Boston, Amer. Meteor. Soc., 280–285.

    Google Scholar 

  • Kessler, E., E. Newburg, P. Feteris and G. Wickham, 1961–1964: Relationships between tropical precipitation and kinematic cloud models. Repts. 1–5, Travelers Research Center, Contract DA36–039 SC89099.

    Google Scholar 

  • Kessler, E., and J. H. Russo, 1963: A program for the assembly and display of radar-echo distributions. J. Appl. Meteor., 2, 582–593.

    Article  Google Scholar 

  • Kessler, E., and K. E. Wilk, 1968: Radar measurement of precipitation for hydrological purposes. Rept. No. 5, Intern. Hydrol. Decade, World Meteorological Organization, 46 pp.

    Google Scholar 

  • Kuznecov, N. N., and B. Z. Rozdestvenskii, 1959: The existence and uniqueness of the generalized solution of the Cauchy problem for the inhomogeneous law of conservation. Doklady Akad. Nauk, S.S.S.R., 126; 486–489.

    Google Scholar 

  • Langmuir, I., 1948: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteor., 5, 175–192.

    Article  Google Scholar 

  • Lax, P. D., 1954: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math., 7, 159–193.

    Article  Google Scholar 

  • Lhermitte, R. M., and D. Atlas, 1963: Doppler fall speed and particle growth in stratiform precipitation. Proc. Tenth Wea. Radar Conf., Boston, Amer Meteor. Soc., 297–302.

    Google Scholar 

  • Liu, J. Y., and H. D. Orville, 1968: Numerical modeling of precipitation effects on a cumulus cloud. Rept. 68–9, Inst. Atmos. Sci., South Dakota School of Mines and Technology, Rapid City, 70 pp.

    Google Scholar 

  • Liu, J. Y., 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci. 26, (in press).

    Google Scholar 

  • List, R., R. B. Charlton and P. I. Buttuls, 1968: A numerical experiment on the growth and feedback mechanism of hailstones in a one-dimensional steady state cloud model. J. Atmos. Sci., 25, 1061–1074.

    Article  Google Scholar 

  • Ludlam, F. H., 1963: Severe local storms: A review. Meteor. Monog., 5, No. 27, 1–30.

    Google Scholar 

  • Mason, B. J., 1957: The Physics of Clouds. Oxford University Press, 481 pp.

    Google Scholar 

  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 25–29.

    Article  Google Scholar 

  • Marshall, J. S. and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor. 5, 165–166.

    Article  Google Scholar 

  • Mitchell, J. M., 1968: Causes of climatic change. Meteor. Monogr., No. 30, 159 pp.

    Google Scholar 

  • Moore, C. B., B. Vonnegut, E. A. Vrablik and D. A. McCaig, 1966: Gushes of rain and hail after lightning. J. Atmos. Sci., 21, 646–665.

    Article  Google Scholar 

  • Murray, F. W., 1968: An annotated bibliography of dynamic cloud modeling. Memo. Rm-5582 ESSA, The RAND Corp., Santa Monica, Calif.

    Google Scholar 

  • Myers, Vance A., 1962: Precipitable water. Bull. Amer. Meteor. Soc., 43, p. 267.

    Google Scholar 

  • Newell, R., 1959: Some radar observations of tropospheric cellular convection. Res. Rept. No. 33, Wea. Radar Res., Massachusetts Institute of Technology, Contract AF19(604) 2291, 53 pp.

    Google Scholar 

  • Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Vol. 12, New York, Academic Press, 257–307.

    Google Scholar 

  • Newton, C. W., and J. C. Fankhauser, 1957: On the movements of convective storms, with emphasis on size discrimination in relation to water-budget requirements. J. Appl. Meteor., 3, 651–668.

    Article  Google Scholar 

  • Ogura, Y., 1962: Convection of isolated masses of buoyant field: A numerical calculation. J. Atmos. Sci., 19, 492–502.

    Article  Google Scholar 

  • Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173–179.

    Article  Google Scholar 

  • Richtmyer, R. D., 1957: Difference Methods for Initial Value Problems. New York, Interscience (see Chap. 4 ), 238 pp.

    Google Scholar 

  • Rogers, R. R., 1963: An extension of the Z-R relation for Doppler radar. Proc. Eleventh Wee. Radar Conf., Boston, Amer. Meteor. Soc., 158–161.

    Google Scholar 

  • Roys, George P., and E. Kessler, 1966: Measurements by aircraft of condensed water in Great Plains thunderstorms. ESSA Tech. Note 49, NSSL Rept No. 19, U. S. Dept. of Commerce, Washington, D. C., p. 17 (see Table 3, p. 7 ).

    Google Scholar 

  • Sasaki, Y., 1960: Effects of condensation, evaporation and rainfall on the development of mesoscale disturbances: A numerical experiment. Proc. Intern. Symp. Weather Prediction, Tokyo, 477–496.

    Google Scholar 

  • Saunders, P. M., 1966: Some characteristics of tropical marine showers. J. Atmos. Sci., 22, 167–175.

    Article  Google Scholar 

  • Sellers, W. D., 1969: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8, 392–400.

    Article  Google Scholar 

  • Simpson, J., R. H. Simpson, D. A. Andrews and M. A. Eaton, 1965: Experimental cumulus dynamics. Rev. Geophys., 3, 387–431.

    Article  Google Scholar 

  • Simpson, J., and W. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471–479.

    Article  Google Scholar 

  • Singleton, F., and D. J. Smith, 1960: Some observations of drop-size distributions in low layer clouds. Quart. J. Roy. Meteor. Soc., 86, 454–467.

    Article  Google Scholar 

  • Smithsonian Meteorological Tables 1958: The Smithsonian Insti-tution, Washington, D. C. (Sixth Revised Edition), 527 pp.

    Google Scholar 

  • Storm Data 1964: U. S. Dept. of Commerce, Weather Bureau, Vol. 6, Nos. 4 and 11.

    Google Scholar 

  • Squires, P., and J. S. Turner, 1962: An entraining jet model for cumulonimbus updraughts. Tellus, 14, 422–434.

    Article  Google Scholar 

  • Squires, P., and S. Twomey, 1960: The relation between cloud drop spectra and the spectrum of cloud nuclei. Geophys. Monogr., No. 5, Washington, D. C., Amer. Geophys. Union, 211–216.

    Google Scholar 

  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics. J. Atmos. Sci., 24, 36–45.

    Article  Google Scholar 

  • Srivastava, R. C., and D. Atlas, 1969: Growth, motion and concentration of precipitation particles in convective storms. J. Atmos. Sci., 26, 535–544.

    Article  Google Scholar 

  • Starr, V. P., and J. P. Peixoto, 1958: On the global balance of water vapor and hydrology of deserts. Tellus, 10, 188–194.

    Article  Google Scholar 

  • Sulakvelidze, G. D., N. Sh. Bibilashvili and V. F. Lapcheva, 1965: Formation of precipitation and modification of hail processes. Transi. by Israel Program for Scientific Translations; available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. (see especially Chaps. 2 and 3 ).

    Google Scholar 

  • Takeda, T., 1966: Effect of the prevailing wind with vertical shear and the convective cloud accompanied with heavy rainfall. J. Meteor. Soc. Japan. Ser. 2, 44, 129–144.

    Google Scholar 

  • Weickmann, H. K., 1963: A realistic appraisal of weather control. Z. Angew. Math. Phys., 14, 528–543.

    Article  Google Scholar 

  • Weickmann, H. K., and H. J. aufm Kampe, 1953: Physical properties of cumulus clouds. J. Meteor., 10, 204–211.

    Article  Google Scholar 

  • Weinstein, A., and L. G. Davis, 1968: A parameterized numerical model of cumulus convection. Rept. No. 11, Dept. Meteor., Pennsylvania State University, NSF Grant GA-777 44. (Also see Rept. No. 13 of the project, January 1969 ).

    Google Scholar 

  • Wexler, R., 1957: Advection and the melting layer. Meteor. Radar Studies, Rept. No. 4, Blue Hill Meteorological Obs., Harvard University, Contract AF19(604)950, 12 pp.

    Google Scholar 

  • Wexler, R., 1961: Changes in concentration of descending hail. Nubila, 4, No. 2, 28–33.

    Google Scholar 

  • Wexler, R., and D. Atlas, 1956: Factors influencing radar echo intensities in the melting layer. Quart. J. Roy. Meteor. Soc., 82, 349–351.

    Article  Google Scholar 

  • Wexler, R., and D. Atlas, 1957: Moisture supply and growth of stratiform precipitation. J. Meteor., 15, 531–538.

    Article  Google Scholar 

  • Wilk, K. E., 1966: Motion and intensity characteristics of the severe thunderstorms of April 3, 1964. Notes on thunderstorm motions, heights, and circulations, Tech. Memo No. 29, NSSL, Norman, Okla., 9–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 American Meteorological Society

About this chapter

Cite this chapter

Kessler, E. (1969). On the Distribution and Continuity of Water Substance in Atmospheric Circulations. In: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteorological Monographs, vol 10. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-36-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-36-2_1

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-36-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics