Skip to main content

Abstract

Despite minimal activity as single agents, mTOR inhibitors are currently in advanced phases of clinical development in the treatment of breast cancer, and everolimus (Afinitor®, Novartis) has already received regulatory approval in combination with exemestane for the treatment of aromatase inhibitor-refractory metastatic hormone receptor-positive breast cancer. In combination with endocrine agents, mTOR inhibitors contribute to overcoming the resistance mediated by the PI3K-Akt-mTOR pathway, and positive data has also been generated in combination with tamoxifen. Trials have started enrolling patients with hormone receptor-positive breast cancer in the early setting. In the treatment of HER-2+ breast cancer, they are thought to reverse resistance to anti-HER-2 agents. Proof-of-concept trials have already been reported, and everolimus has reached phase 3 development in combination with chemotherapy and trastuzumab upfront or in the trastuzumab-resistant setting. The BOLERO-3 testing the combination of vinorelbine, trastuzumab, and everolimus has already been reported. However, mTOR inhibitors face competition generated by the advent of novel anti-HER-2 agents such as pertuzumab and T-DM1. In the treatment of triple-negative breast cancer, mTOR inhibitors inhibit multiple targets and pathways involved in the pathogenesis of the disease: DNA repair pathways, angiogenesis, EGFR, stem cells, etc. Nevertheless, this setting remains an unmet medical need. Main adverse events are stomatitis, rash, and cytopenias when combined with chemotherapy. Predictive biomarkers are therefore necessary and are being explored using next-generation sequencing in order to better identify the patients who will derive significant benefit from treatment. New agents targeting the same pathway with presumably a better target specificity are now in advanced development phases such as pan-PI3K inhibitors and PI3K alpha subunit-specific inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. N Engl J Med. 2003;348:2431–42.

    Article  CAS  PubMed  Google Scholar 

  2. Ward HW. Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J. 1973;1(5844):13–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, Dowsett M, Ingle J, Peto R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378(9793):771–84.

    Article  Google Scholar 

  4. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Alencar VH, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Mittra I, Müller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Radhika R, Rajan B, Rubach MT, Tort S, Urrútia G, Valentini M, Wang Y, Peto R; for the Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) Collaborative Group. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013; 381(9869):805–816.

    Google Scholar 

  5. Gray RG, Rea D, Handley K, Bowden SJ, Perry P, Earl HM, Poole CJ, Bates T, Chetiyawardana S, Dewar JA, Fernando IN, Grieve R, Nicoll J, Rayter Z, Robinson A, Salman A, Yarnold J, Bathers S, Marshall A, Lee M, on behalf of the aTTom Collaborative Group. aTTom. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol. 2013;(suppl; abstr 5).

    Google Scholar 

  6. Eiermann W, Paepke S, Appfelstaedt J, et al. Preoperative treatment of postmenopausal breast cancer patients with letrozole: a randomized double-blind multicenter study. Ann Oncol. 2001;12:1527–32.

    Article  CAS  PubMed  Google Scholar 

  7. Mouridsen H, Gershanovich M, Sun Y, et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol. 2001;19:2596–606.

    CAS  PubMed  Google Scholar 

  8. Mouridsen H, Gershanovich M, Sun Y, et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol. 2003;21:2101–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cuzick J, Sestak I, Baum M, Buzdar A, Howell A, Dowsett M, Forbes JF, ATAC/LATTE investigators. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet Oncol. 2010;11(12):1135–41.

    Article  CAS  PubMed  Google Scholar 

  10. BIG 1–98 Collaborative Group, Mouridsen H, Giobbie-Hurder A, Goldhirsch A, Thürlimann B, Paridaens R, Smith I, Mauriac L, Forbes J, Price KN, Regan MM, Gelber RD, Coates AS. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N Engl J Med. 2009;361(8):766–76.

    Article  Google Scholar 

  11. Bliss JM, Kilburn LS, Coleman RE, Forbes JF, Coates AS, Jones SE, Jassem J, Delozier T, Andersen J, Paridaens R, van de Velde CJ, Lønning PE, Morden J, Reise J, Cisar L, Menschik T, Coombes RC. Disease-related outcomes with long-term follow-up: an updated analysis of the intergroup exemestane study. J Clin Oncol. 2012;30(7):709–17.

    Article  CAS  PubMed  Google Scholar 

  12. Regan MM, Neven P, Giobbie-Hurder A, Goldhirsch A, Ejlertsen B, Mauriac L, Forbes JF, Smith I, Láng I, Wardley A, Rabaglio M, Price KN, Gelber RD, Coates AS, Thürlimann B, BIG 1–98 Collaborative Group, International Breast Cancer Study Group (IBCSG). Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1–98 randomised clinical trial at 8·1 years median follow-up. Lancet Oncol. 2011;12(12):1101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Goss PE, Ingle JN, Pater JL, Martino S, Robert NJ, Muss HB, Piccart MJ, Castiglione M, Shepherd LE, Pritchard KI, Livingston RB, Davidson NE, Norton L, Perez EA, Abrams JS, Cameron DA, Palmer MJ, Tu D. Late extended adjuvant treatment with letrozole improves outcome in women with early-stage breast cancer who complete 5 years of tamoxifen. J Clin Oncol. 2008;26(12):1948–55.

    Article  CAS  PubMed  Google Scholar 

  14. Bergh J, Jönsson PE, Lidbrink EK, Trudeau M, Eiermann W, Brattström D, Lindemann JP, Wiklund F, Henriksson R. FACT: an open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol. 2012;30(16):1919–25.

    Article  CAS  PubMed  Google Scholar 

  15. Mehta RS, Barlow WE, Albain KS, Vandenberg TA, Dakhil SR, Tirumali NR, Lew DL, Hayes DF, Gralow JR, Livingston RB, Hortobagyi GN. Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med. 2012;367(5):435–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG, Sahmoud T, ATAC Trialists’ Group. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet. 2002;359(9324):2131–9.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins MJ, Stearns V. CYP2D6 polymorphisms and tamoxifen metabolism: clinical relevance. Curr Oncol Rep. 2010;12(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  18. Ewertz M, Gray KP, Regan MM, Ejlertsen B, Price KN, Thürlimann B, Bonnefoi H, Forbes JF, Paridaens RJ, Rabaglio M, Gelber RD, Colleoni M, Láng I, Smith IE, Coates AS, Goldhirsch A, Mouridsen HT. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1–98 trial. J Clin Oncol. 2012;30(32):3967–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E, Malorni L, Zinno L, Lauria R, Bianco AR, De Placido S. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11(13):4741–8.

    Article  PubMed  Google Scholar 

  20. Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, Tjulandin S, Jahn M, Lehle M, Feyereislova A, Révil C, Jones A. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27(33):5529–37.

    Article  CAS  PubMed  Google Scholar 

  21. Johnston S, Pippen Jr J, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF, Maltzman J, Florance A, O’Rourke L, Oliva C, Stein S, Pegram M. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27(33):5538–46.

    Article  CAS  PubMed  Google Scholar 

  22. Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C, Schiff R, Gutierrez C, Migliaccio I, Anagnostou VK, Rimm DL, Magill P, Sellers M. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res. 2011;17(5):1147–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hiscox S, Green TP, Smith C, Jordan N, James M, Nicholson R. Effectiveness of the dual specific Src/Abl kinase inhibitor AZD0530 in combination with tamoxifen in preventing acquired anti-estrogen resistance in breast cancer cells. J Clin Oncol (Meeting Abstracts). 2007; 25(18_suppl):14054.

    Google Scholar 

  24. Yuan R, Kay A, Berg WJ, Lebwohl D. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol. 2009;2:45.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29:4452–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, Chen S, Lane HA. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11(14):5319–28.

    Article  CAS  PubMed  Google Scholar 

  27. Martin LA, Pancholi S, Farmer I, Guest S, Ribas R, Weigel MT, Thornhill AM, Ghazoui Z, A’hern R, Evans DB, Lane HA, Johnston SR, Dowsett M. Effectiveness and molecular interactions of the clinically active mTORC1 inhibitor everolimus in combination with tamoxifen or letrozole in vitro and in vivo. Breast Cancer Res. 2012;14(5):R132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. O’Donnell A, Faivre S, Burris 3rd HA, Rea D, Papadimitrakopoulou V, Shand N, Lane HA, Hazell K, Zoellner U, Kovarik JM, Brock C, Jones S, Raymond E, Judson I. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.

    Article  PubMed  Google Scholar 

  29. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Ramon Y, Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1603–10.

    Article  CAS  PubMed  Google Scholar 

  30. Awada A, Cardoso F, Fontaine C, Dirix L, De Grève J, Sotiriou C, Steinseifer J, Wouters C, Tanaka C, Zoellner U, Tang P, Piccart M. The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer. 2008;44(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  31. Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard JC, Debled M, Spaëth D, Legouffe E, Allouache D, El Kouri C, Pujade-Lauraine E. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol. 2012;30(22):2718–24.

    Article  CAS  PubMed  Google Scholar 

  32. Baselga J, Campone M, Piccart M, Burris 3rd HA, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  33. Burris 3rd HA, Lebrun F, Rugo HS, Beck JT, Piccart M, Neven P, Baselga J, Petrakova K, Hortobagyi GN, Komorowski A, Chouinard E, Young R, Gnant M, Pritchard KI, Bennett L, Ricci JF, Bauly H, Taran T, Sahmoud T, Noguchi S. Health-related quality of life of patients with advanced breast cancer treated with everolimus plus exemestane versus placebo plus exemestane in the phase 3, randomized, controlled, BOLERO-2 trial. Cancer. 2013;119(10):1908–15.

    Article  CAS  PubMed  Google Scholar 

  34. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, Campone M, Kubista E, Greil R, Bianchi G, Steinseifer J, Molloy B, Tokaji E, Gardner H, Phillips P, Stumm M, Lane HA, Dixon JM, Jonat W, Rugo HS. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27(16):2630–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, Eiermann W, Hess D, Morant R, Semiglazov V, Borner M, Salzberg M, Ostapenko V, Illiger HJ, Behringer D, Bardy-Bouxin N, Boni J, Kong S, Cincotta M, Moore L. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23:5314–22.

    Article  CAS  PubMed  Google Scholar 

  36. Fleming GF, Ma CX, Huo D, Sattar H, Tretiakova M, Lin L, Hahn OM, Olopade FO, Nanda R, Hoffman PC, Naughton MJ, Pluard T, Conzen SD, Ellis MJ. Phase II trial of temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;136:355–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Carpenter JT, Roché H, Campone M, et al. Randomized 3-arm, phase 2 study of temsirolimus (CCI-779) in combination with letrozole in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23(suppl 16; abstr 564):19s.

    Google Scholar 

  38. Wolff AC, Lazar AA, Bondarenko I, Garin AM, Brincat S, Chow L, Sun Y, Neskovic-Konstantinovic Z, Guimaraes RC, Fumoleau P, Chan A, Hachemi S, Strahs A, Cincotta M, Berkenblit A, Krygowski M, Kang LL, Moore L, Hayes DF. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2013;31(2):195–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Dees EC, Carey LA. Improving endocrine therapy for breast cancer: it’s not that simple. J Clin Oncol. 2013;31(2):171–3.

    Article  PubMed  Google Scholar 

  40. Resnik JL, Reichart DB, Huey K, Webster NJ, Seely BL. Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer. Cancer Res. 1998;58(6):1159–64.

    CAS  PubMed  Google Scholar 

  41. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, Burgaud JL, Carter D, Baserga R, Glazer PM. Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res. 1997;57(15):3079–83.

    CAS  PubMed  Google Scholar 

  42. Bartucci M, Morelli C, Mauro L, Andò S, Surmacz E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 2001;61(18):6747–54.

    CAS  PubMed  Google Scholar 

  43. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ma CX, Suman VJ, Goetz M, Haluska P, Moynihan T, Nanda R, Olopade O, Pluard T, Guo Z, Chen HX, Erlichman C, Ellis MJ, Fleming GF. A phase I trial of the IGF-1R antibody cixutumumab in combination with temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat. 2013;139(1):145–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. National Cancer Institute. Cixutumumab and temsirolimus in treating patients with locally recurrent or metastatic breast cancer. ClinicalTrials.gov Identifier: NCT00699491. Last accessed 20 May 2013.

    Google Scholar 

  46. Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, Knowles H, Rivera VM, Kreisberg J, Bedrosian CL, Tolcher AW. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hartford CM, Desai AA, Janisch L, Karrison T, Rivera VM, Berk L, Loewy JW, Kindler H, Stadler WM, Knowles HL, Bedrosian C, Ratain MJ. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res. 2009;15(4):1428–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Seki Y, Yamamoto N, Tamura Y, Goto Y, Shibata T, Tanioka M, Asahina H, Nokihara H, Yamada Y, Shimamoto T, Noguchi K, Tamura T. Phase I study for ridaforolimus, an oral mTOR inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;69(4):1099–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Mita MM, Poplin E, Britten CD, Tap WD, Rubin EH, Scott BB, Berk L, Rivera VM, Loewy JW, Dodion P, Haluska F, Sarantopoulos J, Mita A, Tolcher A. Phase I/IIa trial of the mammalian target of rapamycin inhibitor ridaforolimus (AP23573; MK-8669) administered orally in patients with refractory or advanced malignancies and sarcoma. Ann Oncol. 2013;24(4):1104–11.

    Article  CAS  PubMed  Google Scholar 

  50. Ebbinghaus SW. Abstract CN02-02: Dual inhibition of mTOR and IGFR pathways. Mol Cancer Ther. 2011;10(11 Suppl 1). doi:10.1158/1535-7163.TARG-11-CN02-02. Abstracts: AACR-NCI-EORTC international conference: molecular targets and cancer therapeutics, 12–16 Nov 2011, San Francisco.

  51. Cosimo S, Bendell JC, Cervantes-Ruiperez A, Roda D, Prudkin L, Stein MN, Leighton-Swayze A, Song Y, Ebbinghaus S, Baselga J. A phase I study of the oral mTOR inhibitor ridaforolimus (RIDA) in combination with the IGF-1R antibody dalotozumab (DALO) in patients (pts) with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2010;28(15_suppl):3008.

    Google Scholar 

  52. Merck. A phase II trial of ridaforolimus and exemestane, compared to ridaforolimus, dalotuzumab and exemestane in participants with breast cancer (MK-8669-064 AM3). ClinicalTrials.gov Identifier: NCT01605396. Last accessed 20 May 2013.

    Google Scholar 

  53. Adam PJ, Friedbichler K, Hofmann MH, Bogenrieder T, Borges E, Adolf GR. BI 836845, a fully human IGF ligand neutralizing antibody, to improve the efficacy of rapamycin by blocking rapamycin-induced AKT activation. J Clin Oncol. 2012;30(suppl; abstr 3092).

    Google Scholar 

  54. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14(4):320–68.

    Article  CAS  PubMed  Google Scholar 

  55. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson IC, Norton L. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14(3):737–44.

    CAS  PubMed  Google Scholar 

  56. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  57. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al; Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Google Scholar 

  58. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al; FinHer Study Investigators. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med. 2006;354(8):809–20.

    Google Scholar 

  59. Perez EA, Suman VJ, Davidson NE, et al. Sequential versus concurrent trastuzumab in adjuvant chemotherapy for breast cancer. J Clin Oncol. 2011;29(34):4491–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Slamon D, Eiermann W, Robert N et al; Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Google Scholar 

  61. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43.

    Article  CAS  PubMed  Google Scholar 

  62. Baselga J, Cortes J, Kim SB et al, for the CLEOPATRA Study Group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.

    Google Scholar 

  63. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Diéras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  Google Scholar 

  64. Burstein HJ, Sun Y, Dirix LY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol. 2010;28(8):1301–7.

    Article  CAS  PubMed  Google Scholar 

  65. Hickish T, Wheatley D, Lin N, et al. Use of BIBW 2992, a novel irreversible EGFR/HER1 and HER2 tyrosine kinase inhibitor to treat patients with HER2-positive metastatic breast cancer after failure of treatment with trastuzumab. Cancer Res. 2009;69(24 Suppl):5060.

    Google Scholar 

  66. Mohd Sharial MS, Crown J, Hennessy BT. Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann Oncol. 2012;23(12):3007–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. O’Brien NA, Browne BC, Chow L, et al. Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther. 2010;9:1489–502.

    Article  PubMed  Google Scholar 

  68. Eichhorn PJ, Gili M, Scaltriti M, et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 2008;68:9221–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kataoka Y, Mukohara T, Shimada H, et al. Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol. 2010;21:255–62.

    Article  CAS  PubMed  Google Scholar 

  70. Berns K, Horlings HM, Hennessy BT, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395–402.

    Article  CAS  PubMed  Google Scholar 

  71. Esteva FJ, Guo H, Zhang S, et al. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2- positive metastatic breast cancer. Am J Pathol. 2010;177:1647–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Gijsen M, King P, Perera T, et al. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol. 2010;8, e1000563.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Goltsov A, Faratian D, Langdon SP, et al. Compensatory effects in the PI3K/PTEN/AKT signaling network following receptor tyrosine kinase inhibition. Cell Signal. 2011;23:407–16.

    Article  CAS  PubMed  Google Scholar 

  74. Lu CH, Wyszomierski SL, Tseng LM, et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res. 2007;13:5883–8.

    Article  CAS  PubMed  Google Scholar 

  75. Miller TW, Forbes JT, Shah C, et al. Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res. 2009;15:7266–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Nuñez R, Hortobagyi GN, Yu D, Esteva FJ. Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol. 2011;29(23):3126–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Andre F, Campone M, O’Regan R, Manlius C, Massacesi C, Sahmoud T, Mukhopadhyay P, Soria JC, Naughton M, Hurvitz SA. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol. 2010;28(34):5110–5.

    Article  CAS  PubMed  Google Scholar 

  78. Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L, Zhang Y, Massacesi C, Sahmoud T, Gianni L. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2011;125(2):447–55.

    Article  CAS  PubMed  Google Scholar 

  79. Novartis Pharmaceuticals. Everolimus in combination with trastuzumab and paclitaxel in the treatment of HER2 positive locally advanced or metastatic breast cancer (BOLERO-1). ClinicalTrials.gov Identifier: NCT00876395. Last accessed 22 May 2013.

    Google Scholar 

  80. O’Regan R, Ozguroglu M, Andre F, Toi M, Jerusalem G, Heinrich M, Wilks S, Isaacs C, Xu B, Masuda N, Arena FP, Yardley DA, Yap YS, Mukhopadhyay P, Douma S, El-Hashimy M, Taran T, Sahmoud T, David Lebwohl DE, Gianni L. Phase III, randomized, double-blind, placebo-controlled multicenter trial of daily everolimus plus weekly trastuzumab and vinorelbine in trastuzumab-resistant, advanced breast cancer (BOLERO-3). J Clin Oncol. 2013;31(suppl; abstr 505).

    Google Scholar 

  81. Jerusalem G, Masuda N, André F, et al. Safety analysis of BOLERO-3: a phase 3 trial of daily everolimus (EVE) vs placebo (PBO), both with weekly trastuzumab (TRAS) and vinorelbine in trastuzumab-resistant, advanced breast cancer. Presented at: 2013 San Antonio Breast Cancer symposium, 10–14 Dec 2013, San Antonio. Abstract S2-02. Abstract P3-15-03.

    Google Scholar 

  82. André F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, Masuda N, Wilks S, Arena F, Isaacs C, Yap YS, Papai Z, Lang I, Armstrong A, Lerzo G, White M, Shen K, Litton J, Chen D, Zhang Y, Ali S, Taran T, Gianni L. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91.

    Article  PubMed  Google Scholar 

  83. Campone M, Bachelot T, Paoletti X, Merlin J, Delaloge S, Loussouarn D, Bonneterre J, Jimenez M, Rios M, Treilleux I. Predictive value of AKT/mTOR pathway immunohistochemical (IHC) biomarkers for response to preoperative trastuzumab (T) vs trastuzumab + everolimus (T + E) in patients (pts) with early breast cancer (BC): UNICANCER RADHER trial results. Ann Oncol. 2013;24 Suppl 3:iii30.

    Article  Google Scholar 

  84. Gajria D, King T, Pannu H, Sakr R, Modi S, Drullinsky P, Syldor A, Patil S, Seidman A, Norton L, Rosen N, Hudis C, Chandarlapaty S. Tolerability and efficacy of targeting both mTOR and HER2 signaling in trastuzumab-refractory HER2+ metastatic breast cancer. Cancer Res. 2012;72(24 Suppl):Abstract nr P5-18-04.

    Google Scholar 

  85. Yardley D, Seiler M, Ray-Coquard I, Melichar B, Hart L, Dieras V, Barve M, Melnyk A, Dorer D, Turner C, Dodion P. Ridaforolimus (AP23573; MK-8669) in combination with trastuzumab for patients with HER2-positive trastuzumab-refractory metastatic breast cancer: a multicenter phase 2 clinical trial. Cancer Res. 2009;69(24 Suppl):Abstract nr 3091.

    Google Scholar 

  86. University of Kansas. Lapatinib and RAD-001 for HER2 positive metastatic breast cancer. ClinicalTrials.gov Identifier: NCT01283789. Last accessed 22 May 2013.

    Google Scholar 

  87. UNC Lineberger Comprehensive Cancer Center. A study of everolimus, trastuzumab and vinorelbine in HER2-positive breast cancer brain metastases. ClinicalTrials.gov Identifier: NCT01305941. Last accessed 22 May 2013.

    Google Scholar 

  88. Jonsson Comprehensive Cancer Center. Phase 1b/2 trial using lapatinib, everolimus and capecitabine for treatment of HER-2 positive breast cancer with CNS metastasis. ClinicalTrials.gov Identifier: NCT01783756. Last accessed 22 May 2013.

    Google Scholar 

  89. University of Maryland. Study of how well letrozole works in combination with lapatinib followed by an addition of everolimus in postmenopausal women with advanced endocrine resistant breast cancer. ClinicalTrials.gov Identifier: NCT01499160. Last accessed 22 May 2013.

    Google Scholar 

  90. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Nishimura R, Arima N. Is triple negative a prognostic factor in breast cancer? Breast Cancer. 2008;15:303–8.

    Article  PubMed  Google Scholar 

  92. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  93. Foulkes WD, Smith IE, Reis-Filho JS. Triple negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    Article  CAS  PubMed  Google Scholar 

  94. Berrada N, Delaloge S, André F. Treatment of triple-negative metastatic breast cancer: toward individualized targeted treatments or chemosensitization? Ann Oncol. 2010;21 Suppl 7:vii30–5.

    PubMed  Google Scholar 

  95. Andre F, Job B, Dessen P, et al. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res. 2009;15:441–51.

    Article  CAS  PubMed  Google Scholar 

  96. Marty B, Maire V, Gravier E, et al. Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res. 2008;10:R101.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  98. Carey LA, Rugo HS, Marcom PK, Irvin W, Ferraro M, Burrows E, et al. On behalf of the Translational Breast Cancer Research Consortium TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple-negative (basal-like) breast cancer. J Clin Oncol. 2008;26:1009.

    Google Scholar 

  99. Liu T, Yacoub R, Taliaferro-Smith LD, Sun SY, Graham TR, Dolan R, Lobo C, Tighiouart M, Yang L, Adams A, O’Regan RM. Mol Cancer Ther. 2011;10(8):1460–9.

    Article  CAS  PubMed  Google Scholar 

  100. Mayer I, Means-Powell J, Shyr Y, Arteaga C. A phase Ib trial of erlotinib, an EGFR inhibitor, and everolimus (RAD001), an mTOR inhibitor, in patients with metastatic breast cancer. Cancer Res. 2009;69(24 Suppl):Abstract nr 3094.

    Google Scholar 

  101. Silver DP, Richardson AL, Eklund AC, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Beuvink I, Boulay A, Fumagalli S, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120:747–59.

    Article  CAS  PubMed  Google Scholar 

  103. Mayer A, Means-Powell J, Abramson VG, Shyr Y, Balko JM, Kuba MG, Gharavi HM, Schlabach L, Arteaga CL, Pietenpol JA. Phase II trial of RAD001 (everolimus), an mTOR inhibitor, with weekly cisplatin and paclitaxel in patients with HER2–negative metastatic breast cancer (MBC). Cancer Res. 2011;71(24 Suppl):Abstract nr PD09-06.

    Google Scholar 

  104. Vanderbilt-Ingram Cancer Center. Cisplatin and paclitaxel with or without everolimus in treating patients with stage II or stage III breast cancer. ClinicalTrials.gov Identifier: NCT00930930.

    Google Scholar 

  105. Organisation for Oncology and Translational Research. Everolimus in breast cancer patients after pre-operative chemotherapy. ClinicalTrials.gov Identifier: NCT01088893.

    Google Scholar 

  106. Brufsky A, Valero V, Tiangco B, Dakhil S, Brize A, Rugo HS, Rivera R, Duenne A, Bousfoul N, Yardley DA. Second-line bevacizumab-containing therapy in patients with triple-negative breast cancer: subgroup analysis of the RIBBON-2 trial. Breast Cancer Res Treat. 2012;133(3):1067–75.

    Article  CAS  PubMed  Google Scholar 

  107. Thomssen C, Pierga JY, Pritchard KI, Biganzoli L, Cortes-Funes H, Petráková K, Kaufman B, Duenne A, Smith I. First-line bevacizumab-containing therapy for triple-negative breast cancer: analysis of 585 patients treated in the ATHENA study. Oncology. 2012;82(4):218–27.

    Article  CAS  PubMed  Google Scholar 

  108. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8:128–35.

    Article  CAS  PubMed  Google Scholar 

  109. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15(5):1612–22.

    Article  CAS  PubMed  Google Scholar 

  110. Zafar Y, Bendell J, Lager J, Yu D, George D, Nixon A, Petros W, Beci R, Arrowood C, Hurwitz H. Preliminary results of a phase I study of bevacizumab (BV) in combination with everolimus (E) in patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2006;24(18_suppl):3097.

    Google Scholar 

  111. Moroney JW, Schlumbrecht MP, Helgason T, Coleman RL, Moulder S, Naing A, Bodurka DC, Janku F, Hong DS, Kurzrock R. A phase I trial of liposomal doxorubicin, bevacizumab, and temsirolimus in patients with advanced gynecologic and breast malignancies. Clin Cancer Res. 2011;17(21):6840–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Moulder S, Moroney J, Helgason T, Wheler J, Booser D, Albarracin C, Morrow PK, Koenig K, Kurzrock R. Responses to liposomal doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: biologic rationale and implications for stem-cell research in breast cancer. J Clin Oncol. 2011;29(19):e572–5.

    Article  PubMed  Google Scholar 

  113. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68(19):8022–30.

    Article  CAS  PubMed  Google Scholar 

  114. Delbaldo C, Albert S, Dreyer C, Sablin MP, Serova M, Raymond E, Faivre S. Predictive biomarkers for the activity of mammalian target of rapamycin (mTOR) inhibitors. Target Oncol. 2011;6(2):119–24.

    Article  PubMed  Google Scholar 

  115. Hortobagyi GN, Piccart-Gebhart MJ, Rugo HS, Burris HA, Campone M, Noguchi S, Perez AT, Deleu I, Shtivelband M, Provencher L, Masuda N, Dakhil SR, Anderson I, Chen D, Damask A, Huang A, McDonald R, Taran T, Sahmoud T, Baselga J. Correlation of molecular alterations with efficacy of everolimus in hormone receptor–positive, HER2-negative advanced breast cancer: results from BOLERO-2. J Clin Oncol. 2013;31(suppl; abstr LBA509).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Piccart-Gebhart MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag France

About this chapter

Cite this chapter

Aftimos, P.G., Piccart-Gebhart, M.J. (2016). The Role of mTOR Inhibitors in Breast Cancer. In: Mita, M., Mita, A., Rowinsky, E. (eds) mTOR Inhibition for Cancer Therapy: Past, Present and Future. Springer, Paris. https://doi.org/10.1007/978-2-8178-0492-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0492-7_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0491-0

  • Online ISBN: 978-2-8178-0492-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics