Skip to main content

Maternal Cardiovascular Involvement

  • Chapter
  • First Online:
Fetal Growth Restriction

Abstract

Pregnancy is a physiological stress test that is reliant on adequate adaptation of the maternal cardiovascular system. Alterations to blood volume, cardiac output and total vascular resistance are keys to meeting the metabolic demands of the mother and fetus and allowing for adequate perfusion of the uteroplacental unit. Failure of these haemodynamic adaptations can contribute to various disorders of pregnancy, including pre-eclampsia (PE) and fetal growth restriction (FGR). This chapter will explore the methods used to measure maternal cardiac function. We will focus on how they can be used to assess both physiological cardiovascular adaptations during pregnancy and maladaptations that may contribute to pathological processes such as fetal growth restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prefumo F, Muiesan ML, Perini R, Paini A, Bonzi B, Lojacono A, et al. Maternal cardiovascular function in pregnancies complicated by intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;31:65–71.

    Article  CAS  Google Scholar 

  2. Beltramo F, Menteer J, Razavi A, Khemani RG, Szmuszkovicz J, Newth CJ, et al. Validation of an ultrasound cardiac output monitor as a bedside tool for pediatric patients. Pediatr Cardiol. 2016;37:177–83.

    Article  Google Scholar 

  3. van Lelyveld-Haas LE, van Zanten AR, Borm GF, Tjan DH. Clinical validation of the non-invasive cardiac output monitor USCOM-1A in critically ill patients. Eur J Anaesthesiol. 2008;25:917–24.

    Article  Google Scholar 

  4. Vinayagam D, Patey O, Thilaganathan B, Khalil A. Cardiac output assessment in pregnancy: comparison of two automated monitors with echocardiography. Ultrasound Obstet Gynecol. 2017;49:32–8.

    Article  CAS  Google Scholar 

  5. McNamara H, Barclay P, Sharma V. Accuracy and precision of the ultrasound cardiac output monitor (USCOM 1A) in pregnancy: comparison with three-dimensional transthoracic echocardiography. Br J Anaesth. 2014;1:669–76.

    Article  Google Scholar 

  6. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension. 2007;50:197–203.

    Article  CAS  Google Scholar 

  7. Iacobaeus C, Andolf E, Thorsell M, Bremme K, Jörneskog G, Östlund E, et al. Longitudinal study of vascular structure and function during normal pregnancy. Ultrasound Obstet Gynecol. 2017;49:46–53.

    Article  CAS  Google Scholar 

  8. Franz MB, Burgmann M, Neubauer A, Zeisler H, Sanani R, Gottsauner-Wolf M, et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand. 2013;92:960–6.

    Article  Google Scholar 

  9. Townsend RR, Black HR, Chirinos JA, Feig PU, Ferdinand KC, Germain M, et al. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American Artery. J Clin Hypertens. 2015;17:503–13.

    Article  Google Scholar 

  10. Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng. 2015;35:555–65.

    Article  Google Scholar 

  11. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  Google Scholar 

  12. Cornette J, Roos-Hesselink JW. Normal cardiovascular adaptation to pregnancy. In: Stergiopoulos K, Brown D, editors. Evidence-based cardiology consult. London: Springer; 2014.

    Google Scholar 

  13. Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68:540–3.

    Article  CAS  Google Scholar 

  14. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989;256:H1060–5.

    CAS  Google Scholar 

  15. Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5:289–97.

    Article  Google Scholar 

  16. Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130:1003–8.

    Article  Google Scholar 

  17. Grindheim G, Estensen ME, Langesaeter E, Rosseland LA, Toska K. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30:342–50.

    Article  CAS  Google Scholar 

  18. Vasapollo B, Novelli GP, Valensise H. Total vascular resistance and left ventricular morphology as screening tools for complications in pregnancy. Hypertension. 2008;51:1020–6.

    Article  CAS  Google Scholar 

  19. Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9.

    Article  CAS  Google Scholar 

  20. Khalil A, Maiz N, Garcia-Mandujano R, Penco JM, Nicolaides KH. Longitudinal changes in maternal serum placental growth factor and soluble fms-like tyrosine kinase-1 in women at increased risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:324–31.

    Article  CAS  Google Scholar 

  21. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.

    Article  Google Scholar 

  22. Vasapollo B, Valensise H, Novelli GP, Larciprete G, Di Pierro G, Altomare F, et al. Abnormal maternal cardiac function and morphology in pregnancies complicated by intrauterine fetal growth restriction. Ultrasound Obstet Gynecol. 2002;20:452–7.

    Article  CAS  Google Scholar 

  23. Mahendru AA, Foo FL, McEniery CM, Everett TR, Wilkinson IB, Lees CC. Change in maternal cardiac output from preconception to midpregnancy is associated with birth weight in healthy pregnancies. Ultrasound Obstet Gynecol. 2017;49:78–84.

    Article  CAS  Google Scholar 

  24. Guy GP, Ling HZ, Machuca M, Poon LC, Nicolaides KH. Maternal cardiac function at 35–37 weeks’ gestation: relationship with birth weight. Ultrasound Obstet Gynecol. 2017;49:67–72.

    Article  CAS  Google Scholar 

  25. Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in fetal growth-restricted and non-growth-restricted small-forgestational age pregnancies. Ultrasound Obstet Gynecol. 2007;29:51–7.

    Article  CAS  Google Scholar 

  26. de Haas S, Ghossein-Doha C, van Kuijk SM, van Drongelen J, Spaanderman ME. Physiological adaptation of maternal plasma volume during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49:177–87.

    Article  Google Scholar 

  27. Salas SP, Rosso P, Espinoza R, Robert JA, Valdes G, Donoso E. Maternal plasma volume expansion and hormonal changes in women with idiopathic fetal growth retardation. Obstet Gynecol. 1993;81:1029–33.

    CAS  PubMed  Google Scholar 

  28. Laskowska M, Leszczynska-Gorzelak B, Laskowska K, Oleszczuk J. Evaluation of the renin-angiotensin-aldosterone system in pregnancy complicated by preeclampsia with and without intrauterine growth retardation. Ann Univ Mariae Curie Sklodowska Med. 2004;59:451–6.

    PubMed  Google Scholar 

  29. Duvekot JJ, Cheriex EC, Pieters FA, Peeters LL. Severely impaired fetal growth is preceded by maternal hemodynamic maladaptation in very early pregnancy. Acta Obstet Gynecol Scand. 1995;74:693–7.

    Article  CAS  Google Scholar 

  30. De Paco C, Kametas N, Rencoret G, Strobl I, Nicolaides KH. Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age. Obstet Gynecol. 2008;111:292–300.

    Article  Google Scholar 

  31. Stott D, Bolten M, Salman M, Paraschiv D, Clark K, Kametas NA. Maternal demographics and hemodynamics for the prediction of fetal growth restriction at booking, in pregnancies at high risk for placental insufficiency. Acta Obstet Gynecol Scand. 2016;95:329–38.

    Article  Google Scholar 

  32. Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;32:682–6.

    Article  CAS  Google Scholar 

  33. Hedberg E, Radberg C. Maternal heart volume and prematurity. Acta Obstet Gynecol Scand. 1962;41:48–56.

    Article  CAS  Google Scholar 

  34. Valensise H, Vasapollo B, Novelli GP, Larciprete G, Romanini ME, Arduini D, et al. Maternal diastolic function in asymptomatic pregnant women with bilateral notching of the uterine artery waveform at 24 weeks’ gestation: a pilot study. Ultrasound Obstet Gynecol. 2001;18:450–5.

    Article  CAS  Google Scholar 

  35. Vasapollo B, Valensise H, Novelli GP, Altomare F, Galante A, Arduini D. Abnormal maternal cardiac function precedes the clinical manifestation of fetal growth restriction. Ultrasound Obstet Gynecol. 2004;24:23–9.

    Article  CAS  Google Scholar 

  36. Ghossein-Doha C, Khalil A, Lees CC. Maternal hemodynamics: a 2017 update. Ultrasound Obstet Gynecol. 2017;49:10–4.

    Article  CAS  Google Scholar 

  37. Khalil A, Akolekar R, Syngelaki A, Elkhouli M, Nicolaides KH. Maternal hemodynamics at 11-13 weeks’ gestation and risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2012;40:28–34.

    Article  CAS  Google Scholar 

  38. Yuan LJ, Xue D, Duan YY, Cao TS, Yang HG, Zhou N. Carotid arterial intima-media thickness and arterial stiffness in pre-eclampsia: analysis with a radiofrequency ultrasound technique. Ultrasound Obstet Gynecol. 2013;42:644–52.

    Article  CAS  Google Scholar 

  39. Khalil A, Sodre D, Syngelaki A, Akolekar R, Nicolaides KH. Maternal hemodynamics at 11-13 weeks of gestation in pregnancies delivering small for gestational age neonates. Fetal Diagn Ther. 2012;32:231–8.

    Article  CAS  Google Scholar 

  40. Stergiotou I, Bijnens B, Cruz-Lemini M, Figueras F, Gratacos E, Crispi F. Maternal subclinical vascular changes in fetal growth restriction with and without pre-eclampsia. Ultrasound Obstet Gynecol. 2015;46:706–12.

    Article  CAS  Google Scholar 

  41. Melo NA, Araujo Junior E, Helfer TM, Caetano AC, Zamarian AC, Moron AF, et al. Assessment of maternal Doppler parameters of ophthalmic artery in fetuses with growth restriction in the third trimester of pregnancy: a case-control study. J Obstet Gynaecol Res. 2015;41:1330–6.

    Article  Google Scholar 

  42. Gurgel Alves JA, Maia e Holanda Moura SB, Araujo Junior E, Tonni G, Martins WP, Da Silva Costa F. Predicting small for gestational age in the first trimester of pregnancy using maternal ophthalmic artery Doppler indices. J Matern Fetal Neonatal Med. 2016;29:1190–4.

    Article  Google Scholar 

  43. Diniz AL, Moron AF, dos Santos MC, Sass N, Pires CR, Debs CL. Ophthalmic artery Doppler as a measure of severe pre-eclampsia. Int J Gynaecol Obstet. 2008;100:216–20.

    Article  CAS  Google Scholar 

  44. Gurgel Alves JA, Praciano de Sousa PC, Maia e Holanda Moura SB, Kane SC, da Silva Costa F. First-trimester maternal ophthalmic artery Doppler analysis for prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2014;44:411–8.

    Article  CAS  Google Scholar 

  45. Kalafat E, Laoreti A, Khalil A, Da Silva CF, Thilaganathan B. Ophthalmic artery Doppler prediction of preeclampsia: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;51:731–7.

    Article  CAS  Google Scholar 

  46. Thilaganathan B. Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol. 2017;49:7–9.

    Article  CAS  Google Scholar 

  47. Crovetto F, Crispi F, Scazzocchio E, et al. First-trimester screening for early and late small-for-gestational-age neonates using maternal serum biochemistry, blood pressure and uterine artery Doppler. Ultrasound Obstet Gynecol. 2014;43:34–40.

    Article  CAS  Google Scholar 

  48. Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014;36:117–28.

    Article  Google Scholar 

  49. Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108.

    Article  Google Scholar 

  50. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–6.

    Article  CAS  Google Scholar 

  51. Pariente G, Sheiner E, Kessous R, Michael S, Shoham-Vardi I. Association between delivery of a small-for-gestational-age neonate and longterm maternal cardiovascular morbidity. Int J Gynaecol Obstet. 2013;123:68–71.

    Article  Google Scholar 

  52. Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68:1447–58.

    Article  Google Scholar 

  53. Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10:e003497.

    Article  Google Scholar 

  54. Hillman SL, Kubba T, Williams DJ. Delivery of small-for-gestational-age neonate and association with early-onset impaired maternal endothelial function. Ultrasound Obstet Gynecol. 2017;49:150–4.

    Article  CAS  Google Scholar 

  55. Kanagalingam MG, Nelson SM, Freeman DJ, et al. Vascular dysfunction and alteration of novel and classic cardiovascular risk factors in mothers of growth restricted offspring. Atherosclerosis. 2009;205:244–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, M., Kroushev, A., Palmer, K., Rolnik, D., Da Silva Costa, F. (2019). Maternal Cardiovascular Involvement. In: Nardozza, L., Araujo Júnior, E., Rizzo, G., Deter, R. (eds) Fetal Growth Restriction. Springer, Cham. https://doi.org/10.1007/978-3-030-00051-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00051-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00050-9

  • Online ISBN: 978-3-030-00051-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics