Skip to main content

Developing a Distributed Drone Delivery System with a Hybrid Behavior Planning System

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Abstract

The demand for fast and reliable parcel shipping is globally rising. Conventional delivery by land requires good infrastructure and causes high costs, especially on the last mile. We present a distributed and scalable drone delivery system based on the contract net protocol for task allocation and the ROS hybrid behaviour planner (RHBP) for goal-oriented task execution. The solution is tested on a modified multi-agent systems simulation platform (MASSIM). Within this environment, the solution scales up well and is profitable across different configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Modified simulation-source: https://gitlab.tubit.tu-berlin.de/mac17/massim/.

References

  1. MASSim: Multi-agent systems simulation platform. https://github.com/agentcontest/massim/. Accessed 13 May 2018

  2. Aknine, S., Pinson, S., Shakun, M.F.: An extended multi-agent negotiation protocol. Auton. Agents Multi-Agent Syst. 8, 5–45 (2004)

    Article  Google Scholar 

  3. Amador, S., Okamoto, S., Zivan, R.: Dynamic multi-agent task allocation with spatial and temporal constraints. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1495–1496. International Foundation for Autonomous Agents and Multiagent Systems (2014)

    Google Scholar 

  4. Bozdag, E.: A survey of extensions to the contract net protocol. Technical report, CiteSeerX-Scientific Literature Digital Library and Search Engine (2008)

    Google Scholar 

  5. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst. Man Cybern. Part C 38(2), 156–172 (2008)

    Article  Google Scholar 

  6. Davis, R., Smith, R.G., Erman, L.: Negotiation as a metaphor for distributed problem solving. In: Readings in Distributed Artificial Intelligence, pp. 333–356. Elsevier (1988)

    Google Scholar 

  7. De Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid Syst. 5(4), 345–355 (2009)

    Article  Google Scholar 

  8. Dellarocas, C., Klein, M., Rodriguez-Aguilar, J.A.: An exception-handling architecture for open electronic marketplaces of contract net software agents. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 225–232. ACM (2000)

    Google Scholar 

  9. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern.: Syst. 47(1), 70–85 (2017)

    Article  Google Scholar 

  10. Durfee, E., Lesser, V.: Partial global planning: a coordination framework for distributed hypothesis formation. IEEE Trans. Syst. Man Cybern. 21(5), 1167–1183 (1991)

    Article  Google Scholar 

  11. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In: AAAI, vol. 94, pp. 1123–1128 (1994)

    Google Scholar 

  12. Ettlinger, M., Sarp, B., Hrabia, C.E., Albayrak, S.: An evaluation framework for UAV surveillance applications. In: The 31st Annual European Simulation and Modelling Conference 2017, pp. 356–362, October 2017

    Google Scholar 

  13. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: minimality and simplicity. Artif. Intell. 119(1–2), 61–101 (2000)

    Article  MathSciNet  Google Scholar 

  14. Georgeff, M.: Communication and interaction in multi-agent planning. In: Proceedings of the National Conference on Artificial Intelligence. Elsevier (1984)

    Google Scholar 

  15. Happe, J., Berger, J.: CoUAV: a multi-UAV cooperative search path planning simulation environment. In: Proceedings of the 2010 Summer Computer Simulation Conference, pp. 86–93. Society for Computer Simulation International (2010)

    Google Scholar 

  16. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 222–236. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0017442

    Chapter  Google Scholar 

  17. Hrabia, C.E., Wypler, S., Albayrak, S.: Towards goal-driven behaviour control of multi-robot systems. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 166–173. IEEE (2017)

    Google Scholar 

  18. Jones, E.G., Dias, M.B., Stentz, A.: Learning-enhanced market-based task allocation for oversubscribed domains. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 2308–2313. IEEE (2007)

    Google Scholar 

  19. Knabe, T., Schillo, M., Fischer, K.: Improvements to the FIPA contract net protocol for performance increase and cascading applications, October 2002

    Google Scholar 

  20. Liu, J., Jing, H., Tang, Y.Y.: Multi-agent oriented constraint satisfaction. Artif. Intell. 136(1), 101–144 (2002)

    Article  MathSciNet  Google Scholar 

  21. Morganti, E., Seidel, S., Blanquart, C., Dablanc, L., Lenz, B.: The impact of e-commerce on final deliveries: alternative parcel delivery services in France and Germany. Transp. Res. Procedia 4, 178–190 (2014)

    Article  Google Scholar 

  22. Panescu, D., Pascal, C.: An extended contract net protocol with direct negotiation of managers. In: Borangiu, T., Trentesaux, D., Thomas, A. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics. SCI, vol. 544, pp. 81–95. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04735-5_6

    Chapter  Google Scholar 

  23. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

    Google Scholar 

  24. Scott, J., Scott, C.: Drone delivery models for healthcare (2017)

    Google Scholar 

  25. Thiels, C.A., Aho, J.M., Zietlow, S.P., Jenkins, D.H.: Use of unmanned aerial vehicles for medical product transport. Air Med. J. 34(2), 104–108 (2015)

    Article  Google Scholar 

  26. Walsh, W.E., Wellman, M.P.: A market protocol for decentralized task allocation. In: 1998 Proceedings of the International Conference on Multi Agent Systems, pp. 325–332. IEEE (1998)

    Google Scholar 

  27. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher-Eyk Hrabia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krakowczyk, D., Wolff, J., Ciobanu, A., Meyer, D.J., Hrabia, CE. (2018). Developing a Distributed Drone Delivery System with a Hybrid Behavior Planning System. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics