Skip to main content

Efficient Multi-range Query Processing on Trajectories

  • Conference paper
  • First Online:
Book cover Conceptual Modeling (ER 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11157))

Included in the following conference series:

Abstract

With the widespread use of devices with geo-positioning technologies, an unprecedented volume of trajectory data is becoming available. In this paper, we propose and study the problem of multi-range query processing over trajectories, that finds the trajectories that pass through a set of given spatio-temporal ranges. Such queries can facilitate urban planning applications by finding traffic movement flows between different parts of a city at different time intervals. To our best knowledge, this is the first work on answering multi-range queries on trajectories. In particular, we first propose a novel two-level index structure that preserves both the co-location of trajectories, and the co-location of points within trajectories. Next we present an efficient query processing algorithm that employs several pruning techniques at different levels of the index. The results of our extensive experimental studies on two real datasets demonstrate that our approach outperforms the baseline by 1 to 2 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://protect-au.mimecast.com/s/08IJCE8kAGuOQ1l9Twb4SR?domain=microsoft.com.

References

  1. Cai, Z., Ren, F., Chen, J., Ding, Z.: Vector-based trajectory storage and query for intelligent transport system. IEEE Trans. Intell. Transp. Syst. 19, 1–12 (2017)

    Article  Google Scholar 

  2. Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: CIDR (2003)

    Google Scholar 

  3. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: ICDE, pp. 900–911 (2011)

    Google Scholar 

  4. Cudré-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (2010)

    Google Scholar 

  5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  6. Han, Y., Chang, L., Zhang, W., Lin, X., Wang, L.: Efficiently retrieving top-k trajectories by locations via traveling time. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 122–134. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08608-8_11

    Chapter  Google Scholar 

  7. Hjaltason, G.R., Samet, H.: Speeding up construction of PMR quadtree-based spatial indexes. VLDB J. 11(2), 109–137 (2002)

    Article  Google Scholar 

  8. Klinger, A.: Patterns and search statistics. In: Optimizing Methods in Statistics, pp. 303–337. Elsevier (1971)

    Google Scholar 

  9. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73540-3_25

    Chapter  Google Scholar 

  10. Nascimento, M.A., Silva, J.R.O.: Towards historical r-trees. In: Proceedings of the 1998 ACM Symposium on Applied Computing, pp. 235–240 (1998)

    Google Scholar 

  11. Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing spatio-temporal data warehouses. In: ICDE, pp. 166–175 (2002)

    Google Scholar 

  12. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: VLDB, pp. 395–406 (2000)

    Google Scholar 

  13. Popa, I.S., Zeitouni, K., Oria, V., Barth, D., Vial, S.: Indexing in-network trajectory flows. VLDB J. 20(5), 643–669 (2011)

    Article  Google Scholar 

  14. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

    Book  Google Scholar 

  15. Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: ICDE, pp. 999–1010 (2015)

    Google Scholar 

  16. Sacharidis, D., et al.: On-line discovery of hot motion paths. In: EDBT, pp. 392–403 (2008)

    Google Scholar 

  17. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann, San Francisco (2006)

    Google Scholar 

  18. Shang, S., Chen, L., Jensen, C.S., Wen, J., Kalnis, P.: Searching trajectories by regions of interest. TKDE 29(7), 1549–1562 (2017)

    Google Scholar 

  19. Song, Z., Roussopoulos, N.: Seb-tree: an approach to index continuously moving objects. In: MDM, pp. 340–344 (2003)

    Google Scholar 

  20. Tang, L.-A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neighboring trajectories by a set of point locations. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp. 223–241. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22922-0_14

    Chapter  Google Scholar 

  21. Tao, Y., Papadias, D.: Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In: VLDB, pp. 431–440 (2001)

    Google Scholar 

  22. Theodoridis, Y., Vazirgiannis, M., Sellis, T.K.: Spatio-temporal indexing for large multimedia applications. In: ICMCS, pp. 441–448 (1996)

    Google Scholar 

  23. Wang, H., Zimmermann, R.: Processing of continuous location-based range queries on moving objects in road networks. TKDE 23(7), 1065–1078 (2011)

    Google Scholar 

  24. Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.W.: SharkDB: an in-memory column-oriented trajectory storage. In: CIKM, pp. 1409–1418 (2014)

    Google Scholar 

  25. Wang, S., Bao, Z., Culpepper, J.S., Sellis, T., Cong, G.: Reverse k nearest neighbor search over trajectories. TKDE 30(4), 757–771 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Science Foundation under Grant IIS-13-20791, ARC DP170102726, DP180102050, NSFC 61728204 and 91646204. Zhifeng Bao is a recipient of Google Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munkh-Erdene Yadamjav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadamjav, ME., Choudhury, F.M., Bao, Z., Samet, H. (2018). Efficient Multi-range Query Processing on Trajectories. In: Trujillo, J., et al. Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11157. Springer, Cham. https://doi.org/10.1007/978-3-030-00847-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00847-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00846-8

  • Online ISBN: 978-3-030-00847-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics