Skip to main content

Monitoring System for Shrimp Farming: A Case Study of CAMASIG S.A.

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2018)

Abstract

In 2016, Ecuador produced 368,181 tons of shrimp Penaeus vannamei and ex-ported 370,780 tons corresponding to $ 2.58 billion, according to ProEcuador (Institute for Export and Investment Promotion). The shrimp exportation represented 22.76% of the country’s non-oil exports. The Ecuadorian shrimp industry invests in technology focused on improving the production of shrimp and the quality of the postlarvae aiming to avoid falls in production, high mortality rates and disparity in the size of shrimp. However, it is necessary that this industry adopts innovative technologies that allow it to improve the quality and production of its products. In this sense, this work presents a case study where a water monitoring system was implemented in a shrimp culture pond of the CAMASIG S.A. company. This system integrates technologies such as Cloud computing, Arduino-based devices, and mobile applications that allow users to remotely monitor a shrimp culture pond, as well as to receive alerts when an out-of-range water parameter (pH, temperature, and dissolved oxygen) is detected. This last module consists of a set of sensors that allows collecting data about the pH, temperature, and dissolved oxygen in the water. This system was evaluated to test its effectiveness in terms of the size, weight, and the percentage of survival of the shrimp achieved when the shrimp culture pond is monitored by this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campos-Montes, G.R., Montaldo, H.H., Martínez-Ortega, A., Jiménez, A.M., Castillo-Juárez, H.: Genetic parameters for growth and survival traits in Pacific white shrimp Penaeus (Litopenaeus) vannamei from a nucleus population undergoing a two-stage selection program. Aquac. Int. 21, 299–310 (2013)

    Article  Google Scholar 

  2. Schwartz, B., Baca, A.: Wearables and apps – modern diagnostic frameworks for health promotion through sport. Dtsch. Z. Sportmed. 2016, 131–136 (2016)

    Article  Google Scholar 

  3. Haghi, M., Thurow, K., Stoll, R.: Wearable devices in medical internet of things: scientific research and commercially available devices. Healthc. Inform. Res. 23, 4 (2017)

    Article  Google Scholar 

  4. Ozanne, A., Johansson, D., Hällgren Graneheim, U., Malmgren, K., Bergquist, F., Alt Murphy, M.: Wearables in epilepsy and Parkinson’s disease-a focus group study. Acta Neurol. Scand. 137, 188–194 (2018)

    Article  Google Scholar 

  5. Universities, C.: Technology’s past, present and future role in education. Autumn 41–43 (2017)

    Google Scholar 

  6. Virtual Reality Society: Understanding Sensors: Magnetometers, Accelerometers and Gyroscopes - Virtual Reality

    Google Scholar 

  7. Gómez-Chabla, R., Aguirre-Munizaga, M., Samaniego-Cobo, T., Choez, J., Vera-Lucio, N.: A reference framework for empowering the creation of projects with Arduino in the Ecuadorian Universities. In: Communications in Computer and Information Science (2017)

    Google Scholar 

  8. Domínguez-Aragón, A., Olmedo-Martínez, J.A., Zaragoza-Contreras, E.A.: Colorimetric sensor based on a poly(ortho-phenylenediamine-co-aniline) copolymer for the monitoring of tilapia (Orechromis niloticus) freshness. Sens. Actuators B Chem. 259, 170–176 (2018)

    Article  Google Scholar 

  9. Viseur, R.: From open source software to open source hardware. 378, 286–291 (2012)

    Google Scholar 

  10. Taylor, P., Gayar, O.F., El-gayar, O.F.: The use of information technology in aquaculture management. Aquac. Econ. Manag. 37–41 (2008)

    Google Scholar 

  11. Sun, E., Zhang, X., Li, Z.: The internet of things (IOT) and cloud computing (CC) based tailings dam monitoring and pre-alarm system in mines. Saf. Sci. 50, 811–815 (2012)

    Article  Google Scholar 

  12. Sendra, S., Parra, L., Lloret, J., Llario, F.: Smart wireless sensor network to detect and protect sheep and goats to wolf attacks. Recent Adv. Commun. Netw. Technol. 2, 91–101 (2013)

    Article  Google Scholar 

  13. Wu, H., Aoki, A., Arimoto, T., Nakano, T., Ohnuki, H., Murata, M., Ren, H., Endo, H.: Fish stress become visible: a new attempt to use biosensor for real-time monitoring fish stress. Biosens. Bioelectron. 67, 503–510 (2015)

    Article  Google Scholar 

  14. Hibi, K., Hatanaka, K., Takase, M., Ren, H., Endo, H.: Wireless biosensor system for real-time l-lactic acid monitoring in fish. Sensors (Switzerland) 12, 6269–6281 (2012)

    Article  Google Scholar 

  15. Quality, W., Monitoring, I., Shrimp, F.O.R., Open, U., Hardware, S., Systems, F.I.: Camaronicultura por medio de un hardware de acceso. Biotecnia 45–49 (2016)

    Google Scholar 

  16. Cortez, G.D.: Design of an automated system for administration of food in culture tilapia. Investigatio 1, 33–65 (2014)

    Google Scholar 

  17. Abdelsalam, M., Krishnan, R., Sandhu, R.: Clustering-based IaaS cloud monitoring. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 672–679. IEEE (2017)

    Google Scholar 

  18. Bhaskar, R.K., Anslow, C., Brosz, J., Maurer, F.: Developing usable APIs with XP and cognitive dimensions. In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 101–105. IEEE (2016)

    Google Scholar 

  19. Carbajal-Hernández, J.J., Sánchez-Fernández, L.P., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: Immediate water quality assessment in shrimp culture using fuzzy inference systems. Expert Syst. Appl. 39, 10571–10582 (2012)

    Article  Google Scholar 

  20. Urban, J.: Colormetric experiments on aquatic organisms. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10208, pp. 96–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_8

    Chapter  Google Scholar 

  21. Xu, Z., Boyd, C.E.: Reducing the monitoring parameters of fish pond water quality. Aquaculture 465, 359–366 (2016)

    Article  Google Scholar 

  22. Costanzo, A.: An Arduino based system provided with GPS/GPRS shield for real time monitoring of traffic flows. In: AICT 2013 - 7th International Conference on Application of Information and Communication Technologies, Conference Proceedings (2013)

    Google Scholar 

  23. Szydlo, T., Nawrocki, P., Brzoza-Woch, R., Zielinski, K.: Power aware MOM for telemetry-oriented applications using GPRS-enabled embedded devices – levee monitoring use case. In: 2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014 (2014)

    Google Scholar 

  24. Al Harrasi, A., Onsy, A., Fragaki, K.: Remotely operated solar panel automated cleaning system. In: Joint Conference: MFPT 2015 and ISA’s 61st International Instrumentation Symposium - Technology Evolution: Sensors to Systems for Failure Prevention (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Gómez-Chabla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Chabla, R., Real-Avilés, K., Delgado-Vera, C., Chávez, C., Vera-Lucio, N. (2018). Monitoring System for Shrimp Farming: A Case Study of CAMASIG S.A.. In: Valencia-García, R., Alcaraz-Mármol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2018. Communications in Computer and Information Science, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-030-00940-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00940-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00939-7

  • Online ISBN: 978-3-030-00940-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics