Skip to main content

Interaction for Immersive Analytics

  • Chapter
  • First Online:
Immersive Analytics

Abstract

In this chapter, we briefly review the development of natural user interfaces and discuss their role in providing human-computer interaction that is immersive in various ways. Then we examine some opportunities for how these technologies might be used to better support data analysis tasks. Specifically, we review and suggest some interaction design guidelines for immersive analytics. We also review some hardware setups for data visualization that are already archetypal. Finally, we look at some emerging system designs that suggest future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N., Witkowski, M., Spence, R.: The inspection of very large images by eye-gaze control. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), pp. 111–118. ACM, New York (2008). https://doi.org/10.1145/1385569.1385589

  2. Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pp. 111–117. IEEE Computer Society, Los Alamitos (2005). https://doi.org/10.1109/INFVIS.2005.1532136

  3. Andrews, C., Endert, A., North, C.: Space to think: large high-resolution displays for sensemaking. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 55–64. ACM, New York (2010). https://doi.org/10.1145/1753326.1753336

  4. Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013). https://doi.org/10.1016/j.cag.2012.12.003

    Article  Google Scholar 

  5. Arif, A.S., Stuerzlinger, W.: User adaptation to a faulty unistroke-based text entry technique by switching to an alternative gesture set. In: Proceedings of Graphics Interface (GI), pp. 183–192. Canadian Information Processing Society, Toronto (2014). https://doi.org/10.20380/GI2014.24

  6. Bach, B., Sicat, R., Beyer, J., Cordeil, M., Pfister, H.: The hologram in my hand: how effective is interactive exploration of 3D visualizations in immersive tangible augmented reality? IEEE Trans. Vis. Comput. Graph. 24(1), 457–467 (2018). https://doi.org/10.1109/TVCG.2017.2745941

    Article  Google Scholar 

  7. Badam, S.K., Amini, F., Elmqvist, N., Irani, P.: Supporting visual exploration for multiple users in large display environments. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 1–10. IEEE Computer Society, Los Alamitos (2016). https://doi.org/10.1109/VAST.2016.7883506

  8. Ball, R., North, C.: Effects of tiled high-resolution display on basic visualization and navigation tasks. In: Extended Abstracts on Human Factors in Computing Systems (CHI EA), pp. 1196–1199. ACM, New York (2005). https://doi.org/10.1145/1056808.1056875

  9. Ball, R., North, C., Bowman, D.A.: Move to improve: promoting physical navigation to increase user performance with large displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 191–200. ACM, New York (2007). https://doi.org/10.1145/1240624.1240656

  10. Ballmer, S.: CES 2010: a transforming trend-the natural user interface. The Huffington Post (2010). http://www.huffingtonpost.com/steve-ballmer/ces-2010-a-transformingt_b_416598.html/

  11. Beaudouin-Lafon, M., et al.: Multisurface interaction in the WILD room. Computer 45(4), 48–56 (2012). https://doi.org/10.1109/MC.2012.110

    Article  Google Scholar 

  12. Benko, H., Ishak, E.W.: Cross-dimensional gestural interaction techniques for hybrid immersive environments. In: Proceedings of the IEEE Conference on Virtual Reality (VR), pp. 209–216, 327. IEEE Computer Society, Los Alamitos (2005). https://doi.org/10.1109/VR.2005.1492776

  13. Besançon, L., Issartel, P., Ammi, M., Isenberg, T.: Hybrid tactile/tangible interaction for 3D data exploration. IEEE Trans. Vis. Comput. Graph. 23(1), 881–890 (2017). https://doi.org/10.1109/TVCG.2016.2599217

    Article  Google Scholar 

  14. Bier, E.A., et al.: Toolglass and magic lenses: the see-through interface. In: Conference Companion on Human Factors in Computing Systems, pp. 445–446. ACM, New York (1994). https://doi.org/10.1145/259963.260447

  15. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum. Comput. Interact. 8(2–3), 73–272 (2015). https://doi.org/10.1561/1100000049

    Article  Google Scholar 

  16. Bjork, S., Holopainen, J.: Patterns in Game Design. Game Development Series. Charles River Media Inc., Rockland (2004)

    Google Scholar 

  17. Bolt, R.A.: “Put-that-there”: voice and gesture at the graphics interface. ACM SIGGRAPH Comput. Graph. 14(3), 262–270 (1980). https://doi.org/10.1145/965105.807503

    Article  Google Scholar 

  18. Bolt, R.A.: Gaze-orchestrated dynamic windows. ACM SIGGRAPH Comput. Graph. 15(3), 109–119 (1981). https://doi.org/10.1145/965161.806796

    Article  Google Scholar 

  19. Branit, B.: World Builder. Online video (2009). https://vimeo.com/3365942

  20. Brown, M.A., Stuerzlinger, W.: Exploring the throughput potential of in-air pointing. In: Kurosu, M. (ed.) HCI 2016. LNCS, vol. 9732, pp. 13–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39516-6_2

    Chapter  Google Scholar 

  21. Brown, M.A., Stuerzlinger, W., Mendonça Filho, E.J.: The performance of un-instrumented in-air pointing. In: Proceedings of Graphics Interface (GI), pp. 59–66. Canadian Information Processing Society, Toronto (2014). https://doi.org/10.20380/GI2014.08

  22. Bruder, G., Steinicke, F., Stuerzlinger, W.: Effects of visual conflicts on 3D selection task performance in stereoscopic display environments. In: Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI), pp. 115–118. IEEE Computer Society, Los Alamitos (2013). https://doi.org/10.1109/3DUI.2013.6550207

  23. Bruder, G., Steinicke, F., Stuerzlinger, W.: To touch or not to touch? Comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. In: Proceedings of the 1st Symposium on Spatial User Interaction (SUI), pp. 9–16. ACM, New York (2013). https://doi.org/10.1145/2491367.2491369

  24. Bruder, G., Steinicke, F., Stuerzlinger, W.: Touching the void revisited: analyses of touch behavior on and above tabletop surfaces. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 278–296. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40483-2_19

    Chapter  Google Scholar 

  25. Büschel, W., Mitschick, A., Dachselt, R.: Here and now: reality-based information retrieval. In: Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, CHIIR 2018, pp. 171–180. ACM, New York (2018). https://doi.org/10.1145/3176349.3176384

  26. Büschel, W., Reipschläger, P., Langner, R., Dachselt, R.: Investigating the use of spatial interaction for 3D data visualization on mobile devices. In: Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, ISS 2017, pp. 62–71. ACM, New York (2017). https://doi.org/10.1145/3132272.3134125

  27. Bush, V.: As we may think. The Atlantic Monthly 176(1), 101–108 (1945). https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

  28. Butscher, S., Hubenschmid, S., Müller, J., Fuchs, J., Reiterer, H.: Clusters, trends, and outliers: how immersive technologies can facilitate the collaborative analysis of multidimensional data. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 90:1–90:12. ACM, New York (2018). https://doi.org/10.1145/3173574.3173664

  29. Buxton, B.: Multi-touch systems that I have known and loved. Technical report, Microsoft Research (2007). http://www.billbuxton.com/multitouchOverview.html

  30. Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer, an information workspace. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 181–186. ACM, New York (1991). https://doi.org/10.1145/108844.108874

  31. EVL CAVE2 homepage. https://www.evl.uic.edu/entry.php?id=2016

  32. Cernea, D., Kerren, A.: A survey of technologies on the rise for emotion-enhanced interaction. J. Vis. Lang. Comput. 31(Pt. A), 70–86 (2015). https://doi.org/10.1016/j.jvlc.2015.10.001

    Article  Google Scholar 

  33. Chen, J., Bowman, D.A.: Effectiveness of cloning techniques for architectural virtual environments. In: IEEE Virtual Reality Conference, pp. 103–110. IEEE (2006) https://doi.org/10.1109/VR.2006.57

  34. Chen, J., Bowman, D.A.: Domain-specific design of 3D interaction techniques: an approach for designing useful virtual environment applications. Presence Teleoperators Virtual Environ. 18(5), 370–386 (2009). https://doi.org/10.1162/pres.18.5.370

    Article  Google Scholar 

  35. Chen, J., Bowman, D.A., Lucas, J.F., Wingrave, C.A.: Interfaces for cloning in immersive virtual environments. In: Eurographics Symposium on Virtual Environments. The Eurographics Association (2004). https://doi.org/10.2312/EGVE/EGVE04/091-098

  36. Chen, J., Narayan, M.A., Manuel, Pérez-Quiñones, A.: The use of hand-held devices for search tasks in virtual environments. In: The IEEE Symposium on 3D User Interfaces, pp. 15–18 (2005)

    Google Scholar 

  37. Claes, S., Moere, A.V.: The role of tangible interaction in exploring information on public visualization displays. In: Proceedings of the International Symposium on Pervasive Displays (PerDis), pp. 201–207. ACM, New York (2015).https://doi.org/10.1145/2757710.2757733

  38. Coffey, D., et al.: Interactive Slice WIM: Navigating and interrogating volume datasets using a multi-surface, multi-touch VR interface. IEEE Trans. Vis. Comput. Graph. 18(10), 1614–1626 (2012). https://doi.org/10.1109/TVCG.2011.283

    Article  Google Scholar 

  39. Cordeil, M., Cunningham, A., Dwyer, T., Thomas, B.H., Marriott, K.: ImAxes: immersive axes as embodied affordances for interactive multivariate data visualisation. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST 2017, pp. 71–83. ACM, New York (2017). https://doi.org/10.1145/3126594.3126613

  40. Cordeil, M., Dwyer, T., Klein, K., Laha, B., Marriott, K., Thomas, B.H.: Immersive collaborative analysis of network connectivity: CAVE-style or head-mounted display? IEEE Trans. Vis. Comput. Graph. 23(1), 441–450 (2017). https://doi.org/10.1109/TVCG.2016.2599107

    Article  Google Scholar 

  41. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992). https://doi.org/10.1145/129888.129892

    Article  Google Scholar 

  42. Cummings, J.J., Bailenson, J.N.: How immersive is enough? a meta-analysis of the effect of immersive technology on user presence. Media Psychol. 19(2), 272–309 (2016). https://doi.org/10.1080/15213269.2015.1015740

    Article  Google Scholar 

  43. van Dam, A.: Post-WIMP user interfaces. Commun. ACM 40(2), 63–67 (1997). https://doi.org/10.1145/253671.253708

    Article  MathSciNet  Google Scholar 

  44. Dostal, J., Hinrichs, U., Kristensson, P.O., Quigley, A.: Spidereyes: designing attention- and proximity-aware collaborative interfaces for wall-sized displays. In: Proceedings of the International Conference on Intelligent User Interfaces (IUI), pp. 143–152. ACM, New York (2014). https://doi.org/10.1145/2557500.2557541

  45. Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. MIT Press, Cambridge (2001)

    Google Scholar 

  46. Drucker, S.M., Fisher, D., Sadana, R., Herron, J., Schraefel, M.C.: TouchViz: a case study comparing two interfaces for data analytics on tablets. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 2301–2310. ACM, New York (2013). https://doi.org/10.1145/2470654.2481318

  47. Elmqvist, N., Vande Moere, A., Jetter, H.C., Cernea, D., Reiterer, H., Jankun-Kelly, T.J.: Fluid interaction for information visualization. Inf. Vis. 10(4), 327–340 (2011). https://doi.org/10.1177/1473871611413180

    Article  Google Scholar 

  48. Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., Leigh, J.: Omegalib: a multi-view application framework for hybrid reality display environments. In: Proceedings of the IEEE Conference on Virtual Reality (VR), pp. 9–14. IEEE Computer Society, Los Alamitos (2014). https://doi.org/10.1109/VR.2014.6802043

  49. Fikkert, W., D’Ambros, M., Bierz, T., Jankun-Kelly, T.J.: Interacting with visualizations. In: Kerren, A., Ebert, A., Meyer, J. (eds.) Human-Centered Visualization Environments. LNCS, vol. 4417, pp. 77–162. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71949-6_3

    Chapter  Google Scholar 

  50. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: inFORM: dynamic physical affordances and constraints through shape and object actuation. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 417–426. ACM, New York (2013). https://doi.org/10.1145/2501988.2502032

  51. Frisch, M., Heydekorn, J., Dachselt, R.: Diagram editing on interactive displays using multi-touch and pen gestures. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 182–196. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14600-8_18

    Chapter  Google Scholar 

  52. Fu, C.W., Goh, W.B., Ng, J.A.: Multi-touch techniques for exploring large-scale 3D astrophysical simulations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 2213–2222. ACM, New York (2010). https://doi.org/10.1145/1753326.1753661

  53. Gillet, A., Sanner, M., Stoffler, D., Olson, A.: Tangible interfaces for structural molecular biology. Structure 13(3), 483–491 (2005). https://doi.org/10.1016/j.str.2005.01.009

    Article  Google Scholar 

  54. Harrison, C., Sato, M., Poupyrev, I.: Capacitive fingerprinting: exploring user differentiation by sensing electrical properties of the human body. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 537–544. ACM, New York (2012). https://doi.org/10.1145/2380116.2380183

  55. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun. ACM 55(4), 45–54 (2012). https://doi.org/10.1145/2133806.2133821

    Article  Google Scholar 

  56. Hess, R.F., To, L., Zhou, J., Wang, G., Cooperstock, J.R.: Stereo vision: the haves and have-nots. i-Perception 6(3), June 2015. https://doi.org/10.1177/2041669515593028

    Article  Google Scholar 

  57. Hincapié-Ramos, J.D., Guo, X., Moghadasian, P., Irani, P.: Consumed endurance: a metric to quantify arm fatigue of mid-air interactions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 1063–1072. ACM, New York (2014). https://doi.org/10.1145/2556288.2557130

  58. Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: Passive real-world interface props for neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 452–458. ACM, New York (1994). https://doi.org/10.1145/191666.191821

  59. Hinckley, K., et al.: Pen + touch = new tools. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 27–36. ACM, New York (2010). https://doi.org/10.1145/1866029.1866036

  60. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33:1–33:30 (2008). https://doi.org/10.1167/8.3.33

    Article  Google Scholar 

  61. Horak, T., von Zadow, U., Kalms, M., Dachselt, R.: Discussing the state of the art for “in the wild” mobile device localization. In: Proceedings of the ISS Workshop on Interacting with Multi-Device Ecologies “in the wild” (2016). http://cross-surface.com/papers/Cross-Surface_2016-2_paper_2.pdf

  62. Huang, F.C., Chen, K., Wetzstein, G.: The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Transactions on Graphics 34(4), 60:1–60:12 (2015) doi: 10.1145/2766922

    Google Scholar 

  63. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Hum. Comput. Interact. 1(4), 311–338 (1985). https://doi.org/10.1207/s15327051hci0104_2

    Article  Google Scholar 

  64. Hutchinson, T.E., White, K.P., Martin, W.N., Reichert, K.C., Frey, L.A.: Human-computer interaction using eye-gaze input. IEEE Trans. Syst. Man Cybern. 19(6), 1527–1534 (1989). https://doi.org/10.1109/21.44068

    Article  Google Scholar 

  65. Isenberg, P., Dragicevic, P., Willett, W., Bezerianos, A., Fekete, J.D.: Hybrid-image visualization for large viewing environments. IEEE Trans. Vis. Comput. Graph. 19(12), 2346–2355 (2013). https://doi.org/10.1109/TVCG.2013.163

    Article  Google Scholar 

  66. Isenberg, P., Isenberg, T.: Visualization on interactive surfaces: a research overview. i-com 12(3), 10–17 (2013). https://doi.org/10.1524/icom.2013.0020

  67. Isenberg, T.: Interactive exploration of three-dimensional scientific visualizations on large display surfaces. In: Anslow, C., Campos, P., Jorge, J. (eds.) Collaboration Meets Interactive Spaces, pp. 97–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45853-3_6

    Chapter  Google Scholar 

  68. Isenberg, T., Hancock, M.: Gestures vs. postures: ‘Gestural’ touch interaction in 3D environments. In: Proceedings of the CHI Workshop on “The 3rd Dimension of CHI: Touching and Designing 3D User Interfaces” (3DCHI), pp. 53–61 (2012). https://hal.inria.fr/hal-00781237

  69. Ishii, H., Ratti, C., Piper, B., Wang, Y., Biderman, A., Ben-Joseph, E.: Bringing clay and sand into digital design–Continuous tangible user interfaces. BT Technol. J. 22(4), 287–299 (2004). https://doi.org/10.1023/B:BTTJ.0000047607.16164.16

    Article  Google Scholar 

  70. Ishii, H.: The tangible user interface and its evolution. Commun. ACM 51(6), 32–36 (2008). https://doi.org/10.1145/1349026.1349034

    Article  Google Scholar 

  71. Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 234–241. ACM, New York (1997). https://doi.org/10.1145/258549.258715

  72. Jackson, B., Schroeder, D., Keefe, D.F.: Nailing down multi-touch: anchored above the surface interaction for 3D modeling and navigation. In: Proceedings of Graphics Interface (GI), pp. 181–184. Canadian Information Processing Society, Toronto (2012). https://doi.org/10.20380/GI2012.23

  73. Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-WIMP interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 201–210. ACM, New York (2008). https://doi.org/10.1145/1357054.1357089

  74. Jakobsen, M.R., Haile, Y.S., Knudsen, S., Hornbæk, K.: Information visualization and proxemics: design opportunities and empirical findings. IEEE Trans. Vis. Comput. Graph. 19(12), 2386–2395 (2013). https://doi.org/10.1109/TVCG.2013.166

    Article  Google Scholar 

  75. Jang, S., Stuerzlinger, W., Ambike, S., Ramani, K.: Modeling cumulative arm fatigue in mid-air interaction based on perceived exertion and kinetics of arm motion. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 3328–3339. ACM, New York (2017). https://doi.org/10.1145/3025453.3025523

  76. Jankowski, J., Hachet, M.: Advances in interaction with 3D environments. Comput. Graph. Forum 34(1), 152–190 (2015). https://doi.org/10.1111/cgf.12466

    Article  Google Scholar 

  77. Jansen, Y.: Physical and tangible information visualization. Ph.D. thesis, Université Paris Sud - Paris XI, France, March 2014. https://tel.archives-ouvertes.fr/tel-00981521

  78. Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the desktop. IEEE Trans. Vis. Comput. Graph. 19(12), 2396–2405 (2013). https://doi.org/10.1109/TVCG.2013.134

    Article  Google Scholar 

  79. Jansen, Y., et al.: Opportunities and challenges for data physicalization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 3227–3236. ACM, New York (2015). https://doi.org/10.1145/2702123.2702180

  80. Johnson, R., O’Hara, K., Sellen, A., Cousins, C., Criminisi, A.: Exploring the potential for touchless interaction in image-guided interventional radiology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 3323–3332. ACM, New York (2011). https://doi.org/10.1145/1978942.1979436

  81. Jota, R., Nacenta, M.A., Jorge, J.A., Carpendale, S., Greenberg, S.: A comparison of ray pointing techniques for very large displays. In: Proceedings of Graphics Interface (GI), pp. 269–276. Canadian Information Processing Society, Toronto (2010). https://doi.org/10.20380/GI2010.36

  82. Karam, M., Schraefel, M.C.: A taxonomy of gestures in human computer interactions. Technical report 261149, University of Southampton (2005). http://eprints.soton.ac.uk/261149/, ISBN 0854328335

  83. Keefe, D.F.: Integrating visualization and interaction research to improve scientific workflows. IEEE Comput. Graph. Appl. 30(2), 8–13 (2010). https://doi.org/10.1109/MCG.2010.30

    Article  Google Scholar 

  84. Keefe, D.F., Isenberg, T.: Reimagining the scientific visualization interaction paradigm. IEEE Comput. 46(5), 51–57 (2013). https://doi.org/10.1109/MC.2013.178

    Article  Google Scholar 

  85. Kerren, A., Schreiber, F.: Toward the role of interaction in visual analytics. In: Proceedings of the Winter Simulation Conference (WSC), pp. 420:1–420:13. Winter Simulation Conference (2012). http://dl.acm.org/citation.cfm?id=2429759.2430303

  86. Kim, K., Elmqvist, N.: Embodied lenses for collaborative visual queries on tabletop displays. Inf. Vis. 11(4), 319–338 (2012). https://doi.org/10.1177/1473871612441874

    Article  Google Scholar 

  87. Kirmizibayrak, C., Radeva, N., Wakid, M., Philbeck, J., Sibert, J., Hahn, J.: Evaluation of gesture based interfaces for medical volume visualization tasks. In: Proceedings of the International Conference on Virtual Reality Continuum and Its Applications in Industry (VRCAI), pp. 69–74. ACM, New York (2011). https://doi.org/10.1145/2087756.2087764

  88. Kister, U., Klamka, K., Tominski, C., Dachselt, R.: GraSp: combining spatially-aware mobile devices and a display wall for graph visualization and interaction. Comput. Graph. Forum 36(3), 503–514 (2017). https://doi.org/10.1111/cgf.13206

    Article  Google Scholar 

  89. Kister, U., Reipschläger, P., Dachselt, R.: MultiLens: fluent interaction with multi-functional multi-touch lenses for information visualization. In: Proceedings of the ACM Conference on Interactive Surfaces and Spaces (ISS), pp. 139–148. ACM, New York (2016). https://doi.org/10.1145/2992154.2992168

  90. Kister, U., Reipschläger, P., Matulic, F., Dachselt, R.: BodyLenses: embodied magic lenses and personal territories for wall displays. In: Proceedings of the International Conference on Interactive Tabletops & Surfaces (ITS), pp. 117–126. ACM, New York (2015). https://doi.org/10.1145/2817721.2817726

  91. Klamka, K., Siegel, A., Vogt, S., Göbel, F., Stellmach, S., Dachselt, R.: Look & pedal: Hands-free navigation in zoomable information spaces through gaze-supported foot input. In: Proceedings of the International Conference on Multimodal Interaction (ICMI), pp. 123–130. ACM, New York (2015). https://doi.org/10.1145/2818346.2820751

  92. Klapperstuck, M., et al.: ContextuWall: peer collaboration using (large) displays. In: Proceedings of the International Symposium on Big Data Visual Analytics (BDVA), pp. 1–8. IEEE, Red Hook (2016). https://doi.org/10.1109/BDVA.2016.7787047

  93. Klum, S., Isenberg, P., Langner, R., Fekete, J.D., Dachselt, R.: Stackables: combining tangibles for faceted browsing. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 241–248. AVI ’12, ACM, New York (2012). http://doi.acm.org/10.1145/2254556.2254600

  94. Konchada, V., Jackson, B., Le, T., Borazjani, I., Sotiropoulos, F., Keefe, D.F.: Supporting internal visualization of biomedical datasets via 3D rapid prototypes and sketch-based gestures. In: Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D), pp. 214–214. ACM, New York (2011). https://doi.org/10.1145/1944745.1944794

  95. Kruszyński, K.J., van Liere, R.: Tangible props for scientific visualization: concept, requirements, application. Virtual Real. 13(4), 235–244 (2009). https://doi.org/10.1007/s10055-009-0126-1

    Article  Google Scholar 

  96. Kulik, A., et al.: C1x6: a stereoscopic six-user display for co-located collaboration in shared virtual environments. ACM Trans. Graph. 30(6), 188:1–188:12 (2011). https://doi.org/10.1145/2070781.2024222

    Article  Google Scholar 

  97. Kurzhals, K., Fisher, B., Burch, M., Weiskopf, D.: Evaluating visual analytics with eye tracking. In: Proceedings of the Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization (BELIV), pp. 61–69. ACM, New York (2014). https://doi.org/10.1145/2669557.2669560

  98. LaViola, J., Kruijff, E., Bowman, D., McMahan, R., Poupyrev, I.: 3D user interfaces: theory and practice. Usability Series, Pearson Education, Limited (2017)

    Google Scholar 

  99. Le Goc, M.: Supporting versatility in tangible user interfaces using collections of small actuated objects. Ph.D. thesis, Université Paris-Saclay, France, December 2016. https://tel.archives-ouvertes.fr/tel-01453175

  100. Lee, B., Isenberg, P., Riche, N.H., Carpendale, S.: Beyond mouse and keyboard: expanding design considerations for information visualization interactions. IEEE Trans. Vis. Comput. Graph. 18(12), 2689–2698 (2012). https://doi.org/10.1109/TVCG.2012.204

    Article  Google Scholar 

  101. Lee, B., Kazi, R.H., Smith, G.: SketchStory: telling more engaging stories with data through freeform sketching. IEEE Trans. Vis. Comput. Graph. 19(12), 2416–2425 (2013). https://doi.org/10.1109/TVCG.2013.191

    Article  Google Scholar 

  102. Leithinger, D., Lakatos, D., DeVincenzi, A., Blackshaw, M., Ishii, H.: Direct and gestural interaction with relief: a 2.5D shape display. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 541–548. ACM, New York (2011). https://doi.org/10.1145/2047196.2047268

  103. López, D., Oehlberg, L., Doger, C., Isenberg, T.: Towards an understanding of mobile touch navigation in a stereoscopic viewing environment for 3D data exploration. IEEE Trans. Vis. Comput. Graph. 22(5), 1616–1629 (2016). https://doi.org/10.1109/TVCG.2015.2440233

    Article  Google Scholar 

  104. Lucas, J., Bowman, D., Chen, J., Wingrave, C.: Design and evaluation of 3D multiple object selection techniques. In: ACM Interactive 3D graphics (2005)

    Google Scholar 

  105. Lundström, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: Application to orthopedic surgery planning. IEEE Trans. Vis. Comput. Graph. 17(12), December 2011. https://doi.org/10.1109/TVCG.2011.224

    Article  Google Scholar 

  106. Lv, Z., Halawani, A., Feng, S., Li, H., Réhman, S.U.: Multimodal hand and foot gesture interaction for handheld devices. ACM Trans. Multimed. Comput. Commun. Appl. 11(1s), 10:1–10:19 (2014). https://doi.org/10.1145/2645860

    Article  Google Scholar 

  107. MacKenzie, I.S.: Evaluating eye tracking systems for computer input. In: Majaranta, P., Aoki, H., Donegan, M., Hansen, D.W., Hansen, J.P., Hyrskykari, A., Räihä, K.J. (eds.) Gaze Interaction and Applications of Eye Tracking: Advances in Assistive Technologies: Advances in Assistive Technologies, pp. 205–225. IGI Global, Hershey (2011). https://doi.org/10.4018/978-1-61350-098-9.ch015

  108. Majaranta, P., Bulling, A.: Eye tracking and eye-based human-computer interaction. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing, pp. 39–65. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_3

    Google Scholar 

  109. Malik, S., Ranjan, A., Balakrishnan, R.: Interacting with large displays from a distance with vision-tracked multi-finger gestural input. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 43–52. ACM, New York (2005). https://doi.org/10.1145/1095034.1095042

  110. McMahan, A.: Immersion, engagement, and presence: a method for analyzing 3-D video games. In: Wolf, M., Perron, B. (eds.) The Video Game Theory Reader, Chap. 3, pp. 67–86. Routledge (2003). http://www.alisonmcmahan.com/node/277

  111. McNeill, D.: Hand and mind: What gestures reveal about thought. University of Chicago Press (1992). http://press.uchicago.edu/ucp/books/book/chicago/H/bo3641188.html

  112. Mohr, P., Kerbl, B., Donoser, M., Schmalstieg, D., Kalkofen, D.: Retargeting technical documentation to augmented reality. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 3337–3346. ACM, New York (2015). https://doi.org/10.1145/2702123.2702490

  113. Myers, B.A.: A brief history of human-computer interaction technology. ACM Interact. 5(2), 44–54 (1998). https://doi.org/10.1145/274430.274436

    Article  Google Scholar 

  114. Ni, T., Bowman, D.A., Chen, J.: Increased display size and resolution improve task performance in information-rich virtual environments. In: Proceedings of Graphics Interface, pp. 139–146 (2006)

    Google Scholar 

  115. Nilsson, S., Gustafsson, T., Carleberg, P.: Hands free interaction with virtual information in a real environment: Eye gaze as an interaction tool in an augmented reality system. PsychNology J. 7(2), 175–196 (2009)

    Google Scholar 

  116. Norman, D.A.: THE WAY I SEE IT: Signifiers, not affordances. ACM Interact. 15(6), 18–19 (2008). https://doi.org/10.1145/1409040.1409044

    Article  Google Scholar 

  117. Norman, D.A.: Natural user interfaces are not natural. Interactions 17(3), 6–10 (2010). https://doi.org/10.1145/1744161.1744163

    Article  Google Scholar 

  118. Norman, D.A.: The design of everyday things: Revised and expanded edition. Basic books, New York (2013). https://www.jnd.org/books/design-of-everyday-things-revised.html

  119. Piper, B., Ratti, C., Ishii, H.: Illuminating clay: A 3-D tangible interface for landscape analysis. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 355–362. ACM, New York (2002). https://doi.org/10.1145/503376.503439

  120. Pirolli, P., Card, S.: Information foraging. Psychol. Rev. 106(4), 643–675 (1999). https://doi.org/10.1037/0033-295X.106.4.643

    Article  Google Scholar 

  121. Preim, B., Dachselt, R.: Interaktive Systeme. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45247-5

    Book  Google Scholar 

  122. Pretorius, A.J., Purchase, H.C., Stasko, J.T.: Tasks for multivariate network analysis. In: Kerren, A., Purchase, H.C., Ward, M.O. (eds.) Multivariate Network Visualization. LNCS, vol. 8380, pp. 77–95. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06793-3_5

    Chapter  Google Scholar 

  123. Rädle, R., Jetter, H.C., Butscher, S., Reiterer, H.: The effect of egocentric body movements on users’ navigation performance and spatial memory in zoomable user interfaces. In: Proceedings of the International Conference on Interactive Tabletops and Surfaces (ITS), pp. 23–32. ACM, New York (2013). https://doi.org/10.1145/2512349.2512811

  124. Ragan, E.D., Endert, A., Sanyal, J., Chen, J.: Characterizing provenance in visualization and data analysis: an organizational framework of provenance types and purposes. IEEE Trans. Vis. Comput. Graph. 22(1), 31–40 (2016). https://doi.org/10.1109/TVCG.2015.2467551

    Article  Google Scholar 

  125. Rashid, U., Nacenta, M.A., Quigley, A.: The cost of display switching: a comparison of mobile, large display and hybrid UI configurations. In: Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI), pp. 99–106. ACM, New York (2012). https://doi.org/10.1145/2254556.2254577

  126. Rekimoto, J., Green, M.: The information cube: using transparency in 3D information visualization. In: Proceedings of the Annual Workshop on Information Technologies & Systems (WITS), pp. 125–132 (1993). https://www.sonycsl.co.jp/person/rekimoto/cube/

  127. Renambot, L., et al.: SAGE2: a collaboration portal for scalable resolution displays. Futur. Gener. Comput. Syst. 54, 296–305 (2016). https://doi.org/10.1016/j.future.2015.05.014

    Article  Google Scholar 

  128. Roberts, J.C., Ritsos, P.D., Badam, S.K., Brodbeck, D., Kennedy, J., Elmqvist, N.: Visualization beyond the desktop–The next big thing. IEEE Comput. Graph. Appl. 34(6), 26–34 (2014). https://doi.org/10.1109/MCG.2014.82

    Article  Google Scholar 

  129. Robles-De-La-Torre, G.: The importance of the sense of touch in virtual and real environments. IEEE MultiMed. 13(3), 24–30 (2006). https://doi.org/10.1109/MMUL.2006.69

    Article  Google Scholar 

  130. Roth, V., Schmidt, P., Güldenring, B.: The IR ring: Authenticating users’ touches on a multi-touch display. In: Proceedings of the Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 259–262. ACM, New York (2010). https://doi.org/10.1145/1866029.1866071

  131. Samsung introduces 2007 LCD, plasma, DLP and CRT lineup (2007). https://www.engadget.com/2007/01/07/samsung-introduces-2007-lcd-plasma-dlp-and-crt-lineup/. Accessed 11 Apr 2017

  132. Scheurich, D., Stuerzlinger, W.: A one-handed multi-touch method for 3D rotations. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40483-2

    Chapter  Google Scholar 

  133. Shaer, O., Hornecker, E.: Tangible user interfaces: past, present, and future directions. Found. Trends Hum. Comput. Interact. 3(1–2), 4–137 (2010). https://doi.org/10.1561/1100000026

    Article  Google Scholar 

  134. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages (VL), pp. 336–343. IEEE Computer Society, Los Alamitos (1996). https://doi.org/10.1109/VL.1996.545307

  135. Slater, M., Wilbur, S.: A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleoperators Virtual Environ. 6(6), 603–616 (1997). https://doi.org/10.1162/pres.1997.6.6.603

    Article  Google Scholar 

  136. Facebook shows how it’s gonna make virtual reality social. https://www.cnet.com/au/news/facebook-mark-zuckerberg-shows-off-live-vr-virtual-reality-chat-with-oculus-rift/

  137. Spindler, M., Tominski, C., Schumann, H., Dachselt, R.: Tangible views for information visualization. In: Proceedings of the International Conference on Interactive Tabletops and Surfaces (ITS), pp. 157–166. ACM, New York (2010). https://doi.org/10.1145/1936652.1936684

  138. Stasko, J., Görg, C., Liu, Z.: Jigsaw: supporting investigative analysis through interactive visualization. Inf. Vis. 7(2), 118–132 (2008). https://doi.org/10.1145/1466620.1466622

    Article  Google Scholar 

  139. Stellmach, S., Dachselt, R.: Look & touch: gaze-supported target acquisition. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 2981–2990. ACM, New York (2012). https://doi.org/10.1145/2207676.2208709

  140. Stellmach, S., Stober, S., Nürnberger, A., Dachselt, R.: Designing gaze-supported multimodal interactions for the exploration of large image collections. In: Proceedings of the Conference on Novel Gaze-Controlled Applications (NGCA), pp. 1:1–1:8. ACM, New York (2011). https://doi.org/10.1145/1983302.1983303

  141. Stuerzlinger, W., Wingrave, C.: The value of constraints for 3D user interfaces. In: Brunnett, G., Coquillart, S., Welch, G. (eds.) Virtual Realities: Dagstuhl Seminar 2008, pp. 203–224. Springer (2011) https://doi.org/10.1007/978-3-211-99178-7

    Google Scholar 

  142. Sun, J., Stuerzlinger, W., Shuralyov, D.: Shift-sliding and depth-pop for 3D positioning. In: Proceedings of the 2016 Symposium on Spatial User Interaction, pp. 69–78. ACM (2016)

    Google Scholar 

  143. Sutherland, I.E.: Sketchpad: a man-machine graphical communication system. In: Proceedings of the Spring Joint Computer Conference (AFIPS, Spring), pp. 329–346. ACM, New York (1963). https://doi.org/10.1145/1461551.1461591

  144. Sutherland, I.E.: The ultimate display. In: Proceedings of the IFIP Congress, pp. 506–508 (1965)

    Google Scholar 

  145. Sutherland, I.E.: A head-mounted three dimensional display. In: Proceedings of the Fall Joint Computer Conference (AFIPS, Fall, part I), pp. 757–764. ACM, New York (1968). https://doi.org/10.1145/1476589.1476686

  146. Teather, R.J., Stuerzlinger, W.: Pointing at 3D targets in a stereo head-tracked virtual environment. In: Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI), pp. 87–94. IEEE Computer Society, Los Alamitos (2011). https://doi.org/10.1109/3DUI.2011.5759222

  147. Cluster rendering, Unity user manual. https://docs.unity3d.com/Manual/ClusterRendering.html

  148. Vertegaal, R.: Attentive user interfaces. Commun. ACM 46(3), 30–33 (2003). https://doi.org/10.1145/636772.636794

    Article  Google Scholar 

  149. Wai, J., Lubinski, D., Benbow, C.P.: Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101(4), 817 (2009). https://doi.org/10.1037/a0016127

    Article  Google Scholar 

  150. Walny, J., Carpendale, S., Henry Riche, N., Venolia, G., Fawcett, P.: Visual thinking in action: visualizations as used on whiteboards. IEEE Trans. Vis. Comput. Graph. 17(12), 2508–2517 (2011). https://doi.org/10.1109/TVCG.2011.251

    Article  Google Scholar 

  151. Walter, R., Bailly, G., Valkanova, N., Müller, J.: Cuenesics: using mid-air gestures to select items on interactive public displays. In: Proceedings of the International Conference on Human-computer Interaction with Mobile Devices & Services (MobileHCI), pp. 299–308. ACM, New York (2014). https://doi.org/10.1145/2628363.2628368

  152. Wigdor, D., Wixon, D.: Brave NUI world: designing natural user interfaces for touch and gesture. Elsevier/Morgan Kaufmann, Amsterdam (2011). https://doi.org/10.1016/B978-0-12-382231-4.00037-X

    Chapter  Google Scholar 

  153. Wither, J., DiVerdi, S., Höllerer, T.: Annotation in outdoor augmented reality. Comput. Graph. 33(6), 679–689 (2009). https://doi.org/10.1016/j.cag.2009.06.001

    Article  Google Scholar 

  154. Yi, J.S., Kang, Y.A., Stasko, J., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224–1231 (2007). https://doi.org/10.1109/TVCG.2007.70515

    Article  Google Scholar 

  155. Ynnerman, A., Rydell, T., Antoine, D., Hughes, D., Persson, A., Ljung, P.: Interactive visualization of 3D scanned mummies at public venues. Commun. ACM 59(12), 72–81 (2016). https://doi.org/10.1145/2950040

    Article  Google Scholar 

  156. Yu, L., Efstathiou, K., Isenberg, P., Isenberg, T.: Efficient structure-aware selection techniques for 3D point cloud visualizations with 2DOF input. IEEE Trans. Vis. Comput. Graph. 18(12), 2245–2254 (2012). https://doi.org/10.1109/TVCG.2012.217

    Article  Google Scholar 

  157. Yu, L., Svetachov, P., Isenberg, P., Everts, M.H., Isenberg, T.: FI3D: direct-touch interaction for the exploration of 3D scientific visualization spaces. IEEE Trans. Vis. Comput. Graph. 16(6), 1613–1622 (2010). https://doi.org/10.1109/TVCG.2010.157

    Article  Google Scholar 

  158. Brown University YURT homepage. https://web1.ccv.brown.edu/viz-yurt

  159. von Zadow, U., Reipschläger, P., Bösel, D., Sellent, A., Dachselt, R.: YouTouch! low-cost user identification at an interactive display wall. In: Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI), pp. 144–151. ACM, New York (2016). https://doi.org/10.1145/2909132.2909258

  160. Zaroff, C.M., Knutelska, M., Frumkes, T.E.: Variation in stereoacuity: normative description, fixation disparity, and the roles of aging and gender. Investig. Ophthalmol. Vis. Sci. 44(2), 891 (2003). https://doi.org/10.1167/iovs.02-0361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Büschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büschel, W. et al. (2018). Interaction for Immersive Analytics. In: Marriott, K., et al. Immersive Analytics. Lecture Notes in Computer Science(), vol 11190. Springer, Cham. https://doi.org/10.1007/978-3-030-01388-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01388-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01387-5

  • Online ISBN: 978-3-030-01388-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics