Skip to main content

Slow-Growing Nontuberculous Mycobacteria in Transplant

  • Living reference work entry
  • First Online:
Emerging Transplant Infections
  • 46 Accesses

Abstract

Nontuberculous mycobacteria (NTM) are ubiquitous environmental organisms found in soil and water. The expansion of the transplant population combined with an increase in environmental exposures and improvements in mycobacterial diagnosis has contributed to a rise in the diagnosis of NTM infections among transplant recipients, who are at particular risk for infection as well as increased associated morbidity and mortality.

The diagnosis and management of NTM in the transplanted host are challenging. Disease manifestations can be nonspecific, and recognition of invasive infection can be difficult. A combination of culture and molecular diagnostic techniques may be required to make the diagnosis. Treatment of NTM infections is complex due to the need for prolonged therapeutic regimens with multiple drugs with associated toxicities and the need to consider drug-drug interactions between antimicrobials and immunosuppressive agents. We will discuss the epidemiology, clinical presentation, diagnosis, and management of infections in the transplanted host with the most common slow-growing NTM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wentworth AB, Drage LA, Wengenack NL, Wilson JW, Lohse CM. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clin Proc. 2013;88:38–45.

    Article  PubMed  Google Scholar 

  2. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185:881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doucette K, Fishman JA. Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis. 2004;38:1428–39.

    Article  PubMed  Google Scholar 

  4. Song Y, Zhang L, Yang H, Liu G, Huang H, Wu J, Chen J. Nontuberculous mycobacterium infection in renal transplant recipients: a systematic review. Infect Dis. 2018;50:409–16.

    Article  Google Scholar 

  5. Yoo J-W, Jo K-W, Kim S-H, et al. Incidence, characteristics, and treatment outcomes of mycobacterial diseases in transplant recipients. Transpl Int. 2016;29:549–58.

    Article  PubMed  Google Scholar 

  6. Patel R, Roberts GD, Keating MR, Paya CV. Infections due to nontuberculous mycobacteria in kidney, heart, and liver transplant recipients. Clin Infect Dis. 1994;19:263–73.

    Article  CAS  PubMed  Google Scholar 

  7. Knoll BM. Update on nontuberculous mycobacterial infections in solid organ and hematopoietic stem cell transplant recipients. Curr Infect Dis Rep. 2014;16:421.

    Article  CAS  PubMed  Google Scholar 

  8. Knoll BM, Kappagoda S, Gill RR, Goldberg HJ, Boyle K, Baden LR, Fuhlbrigge AL, Marty FM. Non-tuberculous mycobacterial infection among lung transplant recipients: a 15-year cohort study. Transpl Infect Dis. 2012;14:452–60.

    Article  CAS  PubMed  Google Scholar 

  9. Pandian TK, Deziel PJ, Otley CC, Eid AJ, Razonable RR. Mycobacterium marinum infections in transplant recipients: case report and review of the literature. Transpl Infect Dis. 2008;10:358–63.

    Article  CAS  PubMed  Google Scholar 

  10. Piersimoni C. Nontuberculous mycobacteria infection in solid organ transplant recipients. Eur J Clin Microbiol Infect Dis. 2012;31:397–403.

    Article  CAS  PubMed  Google Scholar 

  11. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.

    Article  CAS  PubMed  Google Scholar 

  12. Weinstock DM, Feinstein MB, Sepkowitz KA, Jakubowski A. High rates of infection and colonization by nontuberculous mycobacteria after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003;31:1015–21.

    Article  CAS  PubMed  Google Scholar 

  13. Falkinham JO 3rd. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17:419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Falkinham JO 3rd. Nontuberculous mycobacteria in the environment. Clin Chest Med. 2002;23:529–51.

    Article  PubMed  Google Scholar 

  15. Falkinham JO 3rd. Hospital water filters as a source of Mycobacterium avium complex. J Med Microbiol. 2010;59:1198–202.

    Article  PubMed  Google Scholar 

  16. Gouby A, Branger B, Oules R, Ramuz M. Two cases of Mycobacterium haemophilum infection in a renal-dialysis unit. J Med Microbiol. 1988;25:299–300.

    Article  CAS  PubMed  Google Scholar 

  17. Struelens MJ, Plachouras D. Mycobacterium chimaera infections associated with heater-cooler units (HCU): closing another loophole in patient safety. Euro Surveill. 2016; https://doi.org/10.2807/1560-7917.ES.2016.21.46.30397

  18. Balsam LB, Louie E, Hill F, Levine J, Phillips MS. Mycobacterium chimaera left ventricular assist device infections. J Card Surg. 2017;32:402–4.

    Article  PubMed  Google Scholar 

  19. Hasse B, Hannan M, Keller PM, et al. International Society of Cardiovascular Infectious Diseases Guidelines for the diagnosis, treatment and prevention of disseminated Mycobacterium chimaera infection following cardiac surgery with cardiopulmonary bypass. J Hosp Infect. 2019. https://doi.org/10.1016/j.jhin.2019.10.009.

  20. Nakamura S, Azuma M, Sato M, Fujiwara N, Nishino S, Wada T, Yoshida S. Pseudo-outbreak of Mycobacterium chimaera through aerators of hand-washing machines at a hematopoietic stem cell transplantation center. Infect Control Hosp Epidemiol. 2019;40(12):1433–35.

    Google Scholar 

  21. Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381:1551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bryant JM, Grogono DM, Rodriguez-Rincon D, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354:751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ose N, Minami M, Funaki S, Kanou T, Kanzaki R, Shintani Y. Nontuberculous mycobacterial infection after lung transplantation: a report of four cases. Surg Case Rep. 2019;5:11.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Adjemian J, Olivier KN, Rebecca Prevots D. Epidemiology of pulmonary nontuberculous Mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15:817.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hirama T, Brode SK, Beswick J, et al. Characteristics, treatment and outcomes of nontuberculous mycobacterial pulmonary disease after allogeneic haematopoietic stem cell transplant. Eur Respir J. 2018. https://doi.org/10.1183/13993003.02330-2017.

  26. Beswick J, Shin E, Michelis FV, Thyagu S, Viswabandya A, Lipton JH, Messner H, Marras TK, Kim DDH. Incidence and risk factors for nontuberculous mycobacterial infection after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2018;24:366–72.

    Article  PubMed  Google Scholar 

  27. George IA, Santos CAQ, Olsen MA, Bailey TC. Epidemiology and outcomes of nontuberculous mycobacterial infections in solid organ transplant recipients at a Midwestern Center. Transplantation. 2016;100:1073–8.

    Article  PubMed  Google Scholar 

  28. Higgins R, Kusne S, Reyes J, Yousem S, Gordon R, Van Thiel D, Simmons RL, Starzl T. Mycobacterium tuberculosis after liver transplantation: management and guidelines for prevention. Clin Transpl. 1992;6:81–90.

    Google Scholar 

  29. Keating MR, Daly JS, AST Infectious Diseases Community of Practice. Nontuberculous mycobacterial infections in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):77–82.

    Article  CAS  PubMed  Google Scholar 

  30. Longworth SA, Vinnard C, Lee I, Sims KD, Barton TD, Blumberg EA. Risk factors for nontuberculous mycobacterial infections in solid organ transplant recipients: a case-control study. Transpl Infect Dis. 2014;16:76–83.

    Article  CAS  PubMed  Google Scholar 

  31. Abad CL, Razonable RR. Non-tuberculous mycobacterial infections in solid organ transplant recipients: an update. J Clin Tuberc Other Mycobact Dis. 2016;4:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mirsaeidi M, Farshidpour M, Allen MB, Ebrahimi G, Falkinham JO. Highlight on advances in nontuberculous mycobacterial disease in North America. Biomed Res Int. 2014;2014:919474.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mirsaeidi M, Vu A, Leitman P, Sharifi A, Wisliceny S, Leitman A, Schmid A, Campos M, Falkinham J, Salathe M. A patient-based analysis of the geographic distribution of Mycobacterium avium complex, Mycobacterium abscessus, and Mycobacterium kansasii infections in the United States. Chest. 2017;151:947–50.

    Article  PubMed  Google Scholar 

  34. Gaviria JM, Garcia PJ, Garrido SM, Corey L, Boeckh M. Nontuberculous mycobacterial infections in hematopoietic stem cell transplant recipients: characteristics of respiratory and catheter-related infections. Biol Blood Marrow Transplant. 2000;6:361–9.

    Article  CAS  PubMed  Google Scholar 

  35. Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, Smolen JS, Aguado JM, Fernández-Ruiz M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect. 2018. https://doi.org/10.1016/j.cmi.2018.02.002.

  36. Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72:ii1–64.

    Article  PubMed  Google Scholar 

  37. Andréjak C, Nielsen R, Thomsen VØ, Duhaut P, Sørensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013;68:256–62.

    Article  PubMed  Google Scholar 

  38. Lee W-I, Huang J-L, Yeh K-W, Jaing T-H, Lin T-Y, Huang Y-C, Chiu C-H. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110:750–8.

    Article  CAS  PubMed  Google Scholar 

  39. Dirac MA, Horan KL, Doody DR, Meschke JS, Park DR, Jackson LA, Weiss NS, Winthrop KL, Cangelosi GA. Environment or host?: a case-control study of risk factors for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;186:684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Baddley JW, Cantini F, Goletti D, Gómez-Reino JJ, Mylonakis E, San-Juan R, Fernández-Ruiz M, Torre-Cisneros J. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumour necrosis factor-α agents). Clin Microbiol Infect. 2018. https://doi.org/10.1016/j.cmi.2017.12.025.

  41. Shah SK, McAnally KJ, Seoane L, Lombard GA, LaPlace SG, Lick S, Dhillon GS, Valentine VG. Analysis of pulmonary non-tuberculous mycobacterial infections after lung transplantation. Transpl Infect Dis. 2016;18:585–91.

    Article  CAS  PubMed  Google Scholar 

  42. Huang HC, Weigt SS, Derhovanessian A, et al. Non-tuberculous mycobacterium infection after lung transplantation is associated with increased mortality. J Heart Lung Transplant. 2011;30:790–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang JY, Ha JH, Kang HS, Yoon H-K, Kim H-J, Lee S, Lee D-G, Jung JI, Kim SC, Kim YK. Clinical significance of nontuberculous mycobacteria from respiratory specimens in stem cell transplantation recipients. Int J Hematol. 2015;101:505–13.

    Article  PubMed  Google Scholar 

  44. Longworth SA, Blumberg EA, Barton TD, Vinnard C. Non-tuberculous mycobacterial infections after solid organ transplantation: a survival analysis. Clin Microbiol Infect. 2015;21:43–7.

    Article  CAS  PubMed  Google Scholar 

  45. Yomota M, Yanagawa N, Sakai F, Yamada Y, Sekiya N, Ohashi K, Okamura T. Association between chronic bacterial airway infection and prognosis of bronchiolitis obliterans syndrome after hematopoietic cell transplantation. Medicine. 2019;98:e13951.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Longworth SA, Daly JS, AST Infectious Diseases Community of Practice. Management of Infections due to non-tuberculous mycobacteria in transplant recipients – guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019:e13588.

    Google Scholar 

  48. Krueger S, Rork J, Lee J, Cornejo K, Gibson L, Daly JS, Levin NA. Mycobacterium haemophilum infection in a renal transplant patient with inflammatory bowel disease. Dermatol Online J. 2017;23(9):13030/qt8vs8509k.

    Google Scholar 

  49. Rawla MS, Kozak A, Hadley S, LeCates WW. Mycobacterium avium-intracellulare-associated acute interstitial nephritis: a rare cause of renal allograft dysfunction. Transpl Infect Dis. 2009;11:529–33.

    Article  CAS  PubMed  Google Scholar 

  50. Singhal A, Gates C, Malhotra N, Irwin DA, Chansolme DH, Kohli V. Successful management of primary nontuberculous mycobacterial infection of hepatic allograft following orthotopic liver transplantation for hepatitis C. Transpl Infect Dis. 2011;13:47–51.

    Article  CAS  PubMed  Google Scholar 

  51. Brix SR, Iking-Konert C, Stahl RAK, Wenzel U. Disseminated Mycobacterium haemophilum infection in a renal transplant recipient. BMJ Case Rep. 2016; https://doi.org/10.1136/bcr-2016-216042.

  52. Ombelet S, Van Wijngaerden E, Lagrou K, Tousseyn T, Gheysens O, Droogne W, Doubel P, Kuypers D, Claes KJ. Mycobacterium genavense infection in a solid organ recipient: a diagnostic and therapeutic challenge. Transpl Infect Dis. 2016;18:125–31.

    Article  CAS  PubMed  Google Scholar 

  53. Santos M, Gil-Brusola A, Escandell A, Blanes M, Gobernado M. Mycobacterium genavense infections in a tertiary hospital and reviewed cases in non-HIV patients. Pathol Res Int. 2014;2014:371370.

    Article  CAS  Google Scholar 

  54. Ward MS, Lam KV, Cannell PK, Herrmann RP. Mycobacterial central venous catheter tunnel infection: a difficult problem. Bone Marrow Transplant. 1999;24:325–9.

    Article  CAS  PubMed  Google Scholar 

  55. Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson M-C, Salfinger M, Somoskövi A, Warshauer DM, Wilson ML. Practice guidelines for clinical microbiology laboratories: mycobacteria. Clin Microbiol Rev. 2018; https://doi.org/10.1128/CMR.00038-17.

  56. Richter E, Brown-Elliott BA, Wallace RJ. Mycobacterium: laboratory characteristics of slowly growing mycobacteria *. In: Manual of clinical microbiology. 10th ed: ASM Pub2Web; 2011. p. 503–24.

    Google Scholar 

  57. de Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol. 2014;52:2544–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lau SKP, Curreem SOT, Ngan AHY, Yeung C-K, Yuen K-Y, Woo PCY. First report of disseminated Mycobacterium skin infections in two liver transplant recipients and rapid diagnosis by hsp65 gene sequencing. J Clin Microbiol. 2011;49:3733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol. 1998;36:139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, Deml SM, Wohlfiel SL, Wengenack NL. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic Actinomycetes. J Clin Microbiol. 2016;54:376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61:100–11.

    Article  CAS  PubMed  Google Scholar 

  62. Balada-Llasat JM, Kamboj K, Pancholi P. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J Clin Microbiol. 2013;51:2875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quan TP, Bawa Z, Foster D, et al. Evaluation of whole-genome sequencing for mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line probe assays and phenotyping. J Clin Microbiol. 2018. https://doi.org/10.1128/JCM.01480-17.

  64. Benamu E, Gajurel K, Anderson JN, et al. 2294. Evaluation of the Karius plasma next-generation sequencing cell-free pathogen DNA test to determine the etiology of infection and impact on anti-microbial management in patients with severe neutropenia and fever. Open Forum Inf Diseases. Oxford University Press US; 2018. p. S680–S680.

    Google Scholar 

  65. Nomura J, Rieg G, Bluestone G, Tsai T, Lai A, Terashita D, Bercovici S, Hong DK, Lee BP. Rapid detection of invasive Mycobacterium chimaera disease via a novel plasma-based next-generation sequencing test. BMC Infect Dis. 2019;19:371.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Griffith DE. Treatment of Mycobacterium avium complex (MAC). Semin Respir Crit Care Med. 2018;39:351–61.

    Article  PubMed  Google Scholar 

  67. Lemoine M, Laurent C, Hanoy M, Leporrier J, François A, Guerrot D, Godin M, Bertrand D. Immune reconstitution inflammatory syndrome secondary to Mycobacterium kansasii infection in a kidney transplant recipient. Am J Transplant. 2015;15:3255–8.

    Article  CAS  PubMed  Google Scholar 

  68. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, Turenne CY, Wallace RJ Jr. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol. 2013;51:3389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallace RJ Jr, Brown-Elliott BA, McNulty S, Philley JV, Killingley J, Wilson RW, York DS, Shepherd S, Griffith DE. Macrolide/Azalide therapy for nodular/bronchiectatic Mycobacterium avium complex lung disease. Chest. 2014;146:276–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffith DE, Brown BA, Girard WM, Griffith BE, Couch LA, Wallace RJ Jr. Azithromycin-containing regimens for treatment of Mycobacterium avium complex lung disease. Clin Infect Dis. 2001;32:1547–53.

    Article  CAS  PubMed  Google Scholar 

  71. Benson CA, Williams PL, Currier JS, et al. A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome. Clin Infect Dis. 2003;37:1234–43.

    Article  CAS  PubMed  Google Scholar 

  72. Gordin FM, Sullam PM, Shafran SD, Cohn DL, Wynne B, Paxton L, Perry K, Horsburgh CR Jr. A randomized, placebo-controlled study of rifabutin added to a regimen of clarithromycin and ethambutol for treatment of disseminated infection with Mycobacterium avium complex. Clin Infect Dis. 1999;28:1080–5.

    Article  CAS  PubMed  Google Scholar 

  73. Fadlallah J, Rammaert B, Laurent S, Lanternier F, Pol S, Franck N, Mamzer MF, Dupin N, Lortholary O. Mycobacterium avium complex disseminated infection in a kidney transplant recipient. Transpl Infect Dis. 2016;18:105–11.

    Article  CAS  PubMed  Google Scholar 

  74. Hou R, Nayak R, Pincus SM, Lai J, Omran LM, Alkaade S, Abate G. Esophageal Mycobacterium avium-intracellulare infection in a bone marrow transplant patient: case report and literature review. Transpl Infect Dis. 2019;21:e13019.

    Article  PubMed  Google Scholar 

  75. Miwa S, Shirai M, Toyoshima M, et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc. 2014;11:23–9.

    Article  PubMed  CAS  Google Scholar 

  76. Kim O-H, Kwon BS, Han M, et al. Association between duration of aminoglycoside treatment and outcome of cavitary Mycobacterium avium complex lung disease. Clin Infect Dis. 2019;68:1870–6.

    Article  CAS  PubMed  Google Scholar 

  77. Griffith DE, Eagle G, Thomson R, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198:1559–69.

    Article  CAS  PubMed  Google Scholar 

  78. Ferro BE, Meletiadis J, Wattenberg M, de Jong A, van Soolingen D, Mouton JW, van Ingen J. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60:1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cariello PF, Kwak EJ, Abdel-Massih RC, Silveira FP. Safety and tolerability of clofazimine as salvage therapy for atypical mycobacterial infection in solid organ transplant recipients. Transpl Infect Dis. 2015;17:111–8.

    Article  CAS  PubMed  Google Scholar 

  80. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of Clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest. 2017;152:800–9.

    Article  PubMed  Google Scholar 

  81. Koh W-J, Hong G, Kim S-Y, Jeong B-H, Park HY, Jeon K, Kwon OJ, Lee S-H, Kim CK, Shin SJ. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother. 2013;57:2281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of Tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55:1747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim T, Wills A, Markus A, Prevots DR, Olivier KN. Safety and tolerability of long term use of Tedizolid for treatment of nontuberculous mycobacterial infections. Open Forum Infect Dis. 2016. https://doi.org/10.1093/ofid/ofw172.440.

  84. Brown-Elliott BA, Philley JV, Griffith DE, Thakkar F, Wallace RJ Jr. In vitro susceptibility testing of Bedaquiline against Mycobacterium avium complex. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.01798-16.

  85. Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, Aksamit TR, Griffith DE. Preliminary results of Bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015;148:499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Deshpande D, Srivastava S, Chapagain ML, Lee PS, Cirrincione KN, Pasipanodya JG, Gumbo T. The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. J Antimicrob Chemother. 2017;72:i36–42.

    Article  PubMed  CAS  Google Scholar 

  87. Deshpande D, Srivastava S, Pasipanodya JG, Lee PS, Gumbo T. A novel ceftazidime/avibactam, rifabutin, tedizolid and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. J Antimicrob Chemother. 2017;72:i48–53.

    Article  PubMed  CAS  Google Scholar 

  88. Cho J-H, Yu C-H, Jin M-K, Kwon O, Hong K-D, Choi J-Y, Yoon S-H, Park S-H, Kim C-D, Kim Y-L. Mycobacterium kansasii pericarditis in a kidney transplant recipient: a case report and comprehensive review of the literature. Transpl Infect Dis. 2012;14:E50–5.

    Article  PubMed  Google Scholar 

  89. Moon SM, Choe J, Jhun BW, Jeon K, Kwon OJ, Huh HJ, Lee NY, Daley CL, Koh W-J. Treatment with a macrolide-containing regimen for Mycobacterium kansasii pulmonary disease. Respir Med. 2019;148:37–42.

    Article  PubMed  Google Scholar 

  90. Anjan S, Morris MI. Nontuberculous mycobacteria in solid organ transplant. Curr Opin Organ Transplant. 2019;24:476–82.

    Article  CAS  PubMed  Google Scholar 

  91. Binder AM, Adjemian J, Olivier KN, Prevots DR. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med. 2013;188:807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alexander S, John GT, Jesudason M, Jacob CK. Infections with atypical mycobacteria in renal transplant recipients. Indian J Pathol Microbiol. 2007;50:482–4.

    PubMed  Google Scholar 

  93. Peters EJ, Morice R. Miliary pulmonary infection caused by Mycobacterium terrae in an autologous bone marrow transplant patient. Chest. 1991;100:1449–50.

    Article  CAS  PubMed  Google Scholar 

  94. Malouf MA, Glanville AR. The spectrum of mycobacterial infection after lung transplantation. Am J Respir Crit Care Med. 1999;160:1611–6.

    Article  CAS  PubMed  Google Scholar 

  95. Hoff E, Sholtis M, Procop G, Sabella C, Goldfarb J, Wyllie R, Cunningham R, Stockman L, Hall G. Mycobacterium triplex infection in a liver transplant patient. J Clin Microbiol. 2001;39:2033–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Perandones CE, Roncoroni AJ, Frega NS, Bianchini HM, Hübscher O. Mycobacterium gastri arthritis: septic arthritis due to Mycobacterium gastri in a patient with a renal transplant. J Rheumatol. 1991;18:777–8.

    CAS  PubMed  Google Scholar 

  97. Neeley SP, Denning DW. Cutaneous Mycobacterium thermoresistibile infection in a heart transplant recipient. Rev Infect Dis. 1989;11:608–11.

    Article  CAS  PubMed  Google Scholar 

  98. Christiansen DC, Roberts GD, Patel R. Mycobacterium celatum, an emerging pathogen and cause of false positive amplified Mycobacterium tuberculosis direct test. Diagn Microbiol Infect Dis. 2004;49:19–24.

    Article  PubMed  Google Scholar 

  99. Qvist T, Katzenstein TL, Lillebaek T, Iversen M, Mared L, Andersen AB. First report of lung transplantation in a patient with active pulmonary Mycobacterium simiae infection. Transplant Proc. 2013;45:803–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Benamu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Benamu, E., Nelson, J. (2020). Slow-Growing Nontuberculous Mycobacteria in Transplant. In: Morris, M.I., Kotton, C.N., Wolfe, C. (eds) Emerging Transplant Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-01751-4_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01751-4_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01751-4

  • Online ISBN: 978-3-030-01751-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics