Skip to main content

Nanotheranostics-Based Imaging for Cancer Treatment Monitoring

  • Chapter
  • First Online:
Nanotheranostics for Cancer Applications

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

Abstract

The rapidly developing field of cancer treatment requires versatile strategies for controlled drug delivery and diagnostics. Molecular imaging technology has gained attraction in cancer diagnosis and therapy, partially driven by nanoparticle-based theranostic agents. Nanotheranostics-based imaging platforms offer insights into both malignancy diagnosis and therapeutic response monitoring. Monitoring body response to certain cancer treatment will offer suitable pathological and surgical evaluation guides to evaluate how tumors shrink/metastasize, as well as the side effects associated with the therapeutic approach. This chapter summarizes fundamental imaging features of nanotheranostics, specifically, treatment monitoring in cancer therapy, with applications in therapeutic monitoring, such as tracking angiogenesis, metastasis, and apoptosis, following primary treatment. This chapter also offers an outlook for future translation and clinical applications of such multifunctional nanoconstructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387

    Article  Google Scholar 

  2. Smith, R.A., Andrews, K.S., Brooks, D., Fedewa, S.A., Manassaram-Baptiste, D., Saslow, D., Brawley, O.W., Wender, R.C.: Cancer screening in the United States, 2017: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 67(2), 100–121 (2017). https://doi.org/10.3322/caac.21392

    Article  Google Scholar 

  3. Lim, Z.-Z.J., Li, J.-E.J., Ng, C.-T., Yung, L.-Y.L., Bay, B.-H.: Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 32(8), 983–990 (2011)

    Article  Google Scholar 

  4. Walker, N.F., Gan, C., Olsburgh, J., Khan, M.S.: Diagnosis and management of intradiverticular bladder tumours. Nat. Rev. Urol. 11(7), 383–390 (2014). https://doi.org/10.1038/nrurol.2014.131

    Article  Google Scholar 

  5. Carbone, A., Vaccher, E., Gloghini, A., Pantanowitz, L., Abayomi, A., de Paoli, P., Franceschi, S.: Diagnosis and management of lymphomas and other cancers in HIV-infected patients. Nat. Rev. Clin. Oncol. 11(4), 223–238 (2014). https://doi.org/10.1038/nrclinonc.2014.31

    Article  Google Scholar 

  6. Liu, Z., Chen, X.: Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. (2016)

    Google Scholar 

  7. Choi, K.Y., Liu, G., Lee, S., Chen, X.: Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 4(2), 330–342 (2012). https://doi.org/10.1039/c1nr11277e

    Article  Google Scholar 

  8. Wang, J., Mi, P., Lin, G., Wáng, Y.X.J., Liu, G., Chen, X.: Imaging guided delivery of RNAi for anticancer treatment. Adv. Drug Deliv. Rev. (2016)

    Google Scholar 

  9. Miao, T., Rao, K.S., Spees, J.L., Floreani, R.A.: Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J. Control. Release. 192, 57–66 (2014). https://doi.org/10.1016/j.jconrel.2014.06.029

  10. Miao, T., Fenn, S.L., Charron, P.N., Floreani, R.A.: Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromolecules. 16(12), 3740–3750 (2015). https://doi.org/10.1021/acs.biomac.5b00940

  11. Miao, T., Miller, E.J., McKenzie, C., Floreani, R.A.: Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J. Mater. Chem. B. 3(48), 9242–9249 (2015). https://doi.org/10.1039/C5TB00989H

  12. O'Brien, F.J.: Biomaterials & scaffolds for tissue engineering. Mater. Today. 14(3), 88–95 (2011). https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  Google Scholar 

  13. Mura, S., Couvreur, P.: Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64(13), 1394–1416 (2012). https://doi.org/10.1016/j.addr.2012.06.006

    Article  Google Scholar 

  14. Liu, Y., Miyoshi, H., Nakamura, M.: Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer. 120(12), 2527–2537 (2007). https://doi.org/10.1002/ijc.22709

    Article  Google Scholar 

  15. Chi, X., Huang, D., Zhao, Z., Zhou, Z., Yin, Z., Gao, J.: Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials. 33(1), 189–206 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.032

    Article  Google Scholar 

  16. Pirmohamed, M., Ferner, R.E.: Monitoring drug treatment. BMJ. 327(7425), 1179–1181 (2003)

    Article  Google Scholar 

  17. Weissleder, R., Mahmood, U.: Molecular imaging. Radiology. 219(2), 316–333 (2001). https://doi.org/10.1148/radiology.219.2.r01ma19316

    Article  Google Scholar 

  18. Bao, G., Mitragotri, S., Tong, S.: Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013). https://doi.org/10.1146/annurev-bioeng-071812-152409

    Article  Google Scholar 

  19. Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12, 119–142 (2010). https://doi.org/10.1146/annurev-bioeng-070909-105249

    Article  Google Scholar 

  20. Bhattarai, N., Bhattarai, S.R.: Theranostic nanoparticles: a recent breakthrough in nanotechnology. J. Nanomed. Nanotechnol. 2012, (2012)

    Google Scholar 

  21. Mody, V.V., Siwale, R., Singh, A., Mody, H.R.: Introduction to metallic nanoparticles. J. Pharm Bioall Sci. 2(4), 282–289 (2010). https://doi.org/10.4103/0975-7406.72127

    Article  Google Scholar 

  22. Corr, S.A.: Metal oxide nanoparticles. In: Nanoscience: Volume 1: Nanostructures through Chemistry, vol. 1, pp. 180–207. The Royal Society of Chemistry, London, UK (2013). https://doi.org/10.1039/9781849734844-00180

  23. Bangal, M., Ashtaputre, S., Marathe, S., Ethiraj, A., Hebalkar, N., Gosavi, S.W., Urban, J., Kulkarni, S.K.: Semiconductor nanoparticles. Hyperfine Interact. 160(1), 81–94 (2005). https://doi.org/10.1007/s10751-005-9151-y

    Article  Google Scholar 

  24. Liberman, A., Mendez, N., Trogler, W.C., Kummel, A.C.: Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep. 69(2-3), 132–158 (2014). https://doi.org/10.1016/j.surfrep.2014.07.001

    Article  Google Scholar 

  25. Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., Atyabi, F.: Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine. 6, 877–895 (2011). https://doi.org/10.2147/IJN.S18905

    Article  Google Scholar 

  26. Guilherme, M.R., Mauricio, M.R., Tenório-Neto, E.T., Kunita, M.H., Cardozo-Filho, L., Cellet, T.S.P., Pereira, G.M., Muniz, E.C., da Rocha, S.R.P., Rubira, A.F.: Polycaprolactone nanoparticles containing encapsulated progesterone prepared using a scCO2 emulsion drying technique. Mater. Lett. 124, 197–200 (2014). https://doi.org/10.1016/j.matlet.2014.03.099

    Article  Google Scholar 

  27. Langer, K., Anhorn, M.G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., Faust, S., Vogel, V.: Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 347(1–2), 109–117 (2008). https://doi.org/10.1016/j.ijpharm.2007.06.028

    Article  Google Scholar 

  28. Cardoso, V.S., Quelemes, P.V., Amorin, A., Primo, F.L., Gobo, G.G., Tedesco, A.C., Mafud, A.C., Mascarenhas, Y.P., Corrêa, J.R., Kuckelhaus, S.A., Eiras, C., Leite, J.R.S., Silva, D., dos Santos Júnior, J.R.: Collagen-based silver nanoparticles for biological applications: synthesis and characterization. J. Nanobiotechnol. 12(1), 36 (2014). https://doi.org/10.1186/s12951-014-0036-6

    Article  Google Scholar 

  29. Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release. 200, 138–157 (2015). https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  Google Scholar 

  30. Duncan, R., Gaspar, R.: Nanomedicine(s) under the microscope. Mol. Pharm. 8(6), 2101–2141 (2011). https://doi.org/10.1021/mp200394t

    Article  Google Scholar 

  31. Brindle, K.: New approaches for imaging tumour responses to treatment. Nat. Rev. Cancer. 8(2), 94–107 (2008)

    Article  Google Scholar 

  32. National Lung Screening Trial Research T: The National Lung Screening Trial: overview and study design. Radiology. 258(1), 243–253 (2011). https://doi.org/10.1148/radiol.10091808

    Article  Google Scholar 

  33. Irion, K.L., Hochhegger, B., Marchiori, E., Porto, N.S., Baldisserotto, S.V., Santana, P.R.: Radiograma de tórax e tomografia computadorizada na avaliação do enfisema pulmonar. J. Bras. Pneumol. 33, 720–732 (2007)

    Article  Google Scholar 

  34. McLaughlin, R., Hylton, N.: MRI in breast cancer therapy monitoring. NMR Biomed. 24(6), 712–720 (2011). https://doi.org/10.1002/nbm.1739

    Article  Google Scholar 

  35. Avril, N.E., Weber, W.A.: Monitoring response to treatment in patients utilizing PET. Radiol. Clin. N. Am. 43(1), 189–204 (2005)

    Article  Google Scholar 

  36. Cai, J., Li, F.: Single-photon emission computed tomography tracers for predicting and monitoring cancer therapy. Curr. Pharm. Biotechnol. 14(7), 693–707 (2013)

    Article  Google Scholar 

  37. Falou, O., Sadeghi-Naini, A., Soliman, H., Yaffe, M.J., Czarnota, G.J.: Diffuse optical imaging for monitoring treatment response in breast cancer patients. Conf. Proc IEEE Eng. Med. Biol. Soc. 2012, 3155–3158 (2012). https://doi.org/10.1109/embc.2012.6346634

    Article  Google Scholar 

  38. Hrkach, J., Von Hoff, D., Ali, M.M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Figa, M., Figueiredo, M., Horhota, A., Low, S., McDonnell, K., Peeke, E., Retnarajan, B., Sabnis, A., Schnipper, E., Song, J.J., Song, Y.H., Summa, J., Tompsett, D., Troiano, G., Van Geen Hoven, T., Wright, J., LoRusso, P., Kantoff, P.W., Bander, N.H., Sweeney, C., Farokhzad, O.C., Langer, R., Zale, S.: Preclinical development and clinical translation of a PSMA-targeted Docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra139-128ra139 (2012). https://doi.org/10.1126/scitranslmed.3003651

    Article  Google Scholar 

  39. Janib, S.M., Moses, A.S., MacKay, J.A.: Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62(11), 1052–1063 (2010). https://doi.org/10.1016/j.addr.2010.08.004

    Article  Google Scholar 

  40. Villaraza, A.J.L., Bumb, A., Brechbiel, M.W.: Macromolecules, Dendrimers and Nanomaterials in magnetic resonance imaging: the interplay between size, function and pharmacokinetics. Chem. Rev. 110(5), 2921–2959 (2010). https://doi.org/10.1021/cr900232t

    Article  Google Scholar 

  41. Kunjachan, S., Ehling, J., Storm, G., Kiessling, F., Lammers, T.: Noninvasive imaging of Nanomedicines and Nanotheranostics: principles, Progress, and prospects. Chem. Rev. (2015). https://doi.org/10.1021/cr500314d

  42. Miao, T., Zhang, Y., Zeng, Y., Tian, R., Liu, G.: Functional nanoparticles for molecular imaging-guided gene delivery and therapy. In: Dai, Z. (ed.) Advances in Nanotheranostics II: Cancer Theranostic Nanomedicine, pp. 273–305. Springer Singapore, Singapore (2016). https://doi.org/10.1007/978-981-10-0063-8_8

    Chapter  Google Scholar 

  43. Lu, J., Feng, F., Jin, Z.: Cancer diagnosis and treatment guidance: role of MRI and MRI probes in the era of molecular imaging. Curr. Pharm. Biotechnol. 14(8), 714–722 (2013)

    Article  MathSciNet  Google Scholar 

  44. Strijkers, G.J., Mulder, W.J., van Tilborg, G.A., Nicolay, K.: MRI contrast agents: current status and future perspectives. Anti Cancer Agents Med. Chem. 7(3), 291–305 (2007)

    Article  Google Scholar 

  45. Su, H., Wu, C., Zhu, J., Miao, T., Wang, D., Xia, C., Zhao, X., Gong, Q., Song, B., Ai, H.: Rigid Mn(II) chelate as efficient MRI contrast agent for vascular imaging. Dalton Trans. 41(48), 14480–14483 (2012). https://doi.org/10.1039/c2dt31696j

    Article  Google Scholar 

  46. Luo, K., Tian, J., Liu, G., Sun, J., Xia, C., Tang, H., Lin, L., Miao, T., Zhao, X., Gao, F., Gong, Q., Song, B., Shuai, X., Ai, H., Gu, Z.: Self-assembly of SiO2/Gd-DTPA-polyethylenimine nanocomposites as magnetic resonance imaging probes. J. Nanosci. Nanotechnol. 10(1), 540–548 (2010)

    Article  Google Scholar 

  47. Phillips, W.T., Bao, A., Sou, K., Li, S., Goins, B.: Radiolabeled liposomes as drug delivery nanotheranostics. In: Drug Delivery Applications of Noninvasive Imaging, pp. 252–267. John Wiley & Sons, Inc, Hoboken, NJ, USA (2013). https://doi.org/10.1002/9781118356845.ch11

  48. Luk, B.T., Fang, R.H., Zhang, L.: Lipid- and polymer-based nanostructures for cancer theranostics. Theranostics. 2(12), 1117–1126 (2012). https://doi.org/10.7150/thno.4381

    Article  Google Scholar 

  49. Kaida, S., Cabral, H., Kumagai, M., Kishimura, A., Terada, Y., Sekino, M., Aoki, I., Nishiyama, N., Tani, T., Kataoka, K.: Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res. 70(18), 7031–7041 (2010). https://doi.org/10.1158/0008-5472.can-10-0303

    Article  Google Scholar 

  50. Yu, M.K., Jeong, Y.Y., Park, J., Park, S., Kim, J.W., Min, J.J., Kim, K., Jon, S.: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. Engl. 47(29), 5362–5365 (2008). https://doi.org/10.1002/anie.200800857

    Article  Google Scholar 

  51. Ng, T.S., Wert, D., Sohi, H., Procissi, D., Colcher, D., Raubitschek, A.A., Jacobs, R.E.: Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101. Clin. Cancer Res. 19(9), 2518–2527 (2013). https://doi.org/10.1158/1078-0432.ccr-12-2738

    Article  Google Scholar 

  52. Folkman, J.: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186 (1971). https://doi.org/10.1056/nejm197111182852108

    Article  Google Scholar 

  53. Bergers, G., Hanahan, D.: Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer. 8(8), 592–603 (2008). https://doi.org/10.1038/nrc2442

    Article  Google Scholar 

  54. Wang, Z., Dabrosin, C., Yin, X., Fuster, M.M., Arreola, A., Rathmell, W.K., Generali, D., Nagaraju, G.P., El-Rayes, B., Ribatti, D., Chen, Y.C., Honoki, K., Fujii, H., Georgakilas, A.G., Nowsheen, S., Amedei, A., Niccolai, E., Amin, A., Ashraf, S.S., Helferich, B., Yang, X., Guha, G., Bhakta, D., Ciriolo, M.R., Aquilano, K., Chen, S., Halicka, D., Mohammed, S.I., Azmi, A.S., Bilsland, A., Keith, W.N., Jensen, L.D.: Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 35, Supplement:S224–Supplement:S243 (2015). https://doi.org/10.1016/j.semcancer.2015.01.001

    Article  Google Scholar 

  55. Cai, W., Chen, X.: Multimodality molecular imaging of tumor angiogenesis. J. Nucl. Med. 49(Suppl 2), 113S–128S (2008). https://doi.org/10.2967/jnumed.107.045922

    Article  Google Scholar 

  56. Choyke, P.L., Dwyer, A.J., Knopp, M.V.: Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging. 17(5), 509–520 (2003). https://doi.org/10.1002/jmri.10304

    Article  Google Scholar 

  57. O'Connor, J.P.B., Jackson, A., Parker, G.J.M., Jayson, G.C.: DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer. 96(2), 189–195 (2007). https://doi.org/10.1038/sj.bjc.6603515

    Article  Google Scholar 

  58. Knopp, M.V., Weiss, E., Sinn, H.P., Mattern, J., Junkermann, H., Radeleff, J., Magener, A., Brix, G., Delorme, S., Zuna, I., van Kaick, G.: Pathophysiologic basis of contrast enhancement in breast tumors. J. Magn. Reson. Imaging. 10(3), 260–266 (1999)

    Article  Google Scholar 

  59. Wang, B., Gao, Z.Q., Yan, X.: Correlative study of angiogenesis and dynamic contrast-enhanced magnetic resonance imaging features of hepatocellular carcinoma. Acta. Radiol. 46(4), 353–358 (2005)

    Article  Google Scholar 

  60. Korpanty, G., Carbon, J.G., Grayburn, P.A., Fleming, J.B., Brekken, R.A.: Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin. Cancer Res. 13(1), 323–330 (2007). https://doi.org/10.1158/1078-0432.ccr-06-1313

    Article  Google Scholar 

  61. Campbell, I.D., Humphries, M.J.: Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3(3), (2011). https://doi.org/10.1101/cshperspect.a004994

  62. Danhier, F., Le Breton, A., Preat, V.: RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9(11), 2961–2973 (2012). https://doi.org/10.1021/mp3002733

    Article  Google Scholar 

  63. Tan, M., Lu, Z.-R.: Integrin targeted MR imaging. Theranostics. 1, 83–101 (2011)

    Article  Google Scholar 

  64. Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C.: Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med. 4(5), 623–626 (1998)

    Article  Google Scholar 

  65. Barrett, T., Brechbiel, M., Bernardo, M., Choyke, P.L.: MRI of tumor angiogenesis. J. Magn. Reson. Imaging. 26(2), 235–249 (2007). https://doi.org/10.1002/jmri.20991

    Article  Google Scholar 

  66. Lecouvet, F.E., Talbot, J.N., Messiou, C., Bourguet, P., Liu, Y., de Souza, N.M.: Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur. J. Cancer. 50(15), 2519–2531 (2014). https://doi.org/10.1016/j.ejca.2014.07.002

    Article  Google Scholar 

  67. Heyn, C., Ronald, J.A., Ramadan, S.S., Snir, J.A., Barry, A.M., MacKenzie, L.T., Mikulis, D.J., Palmieri, D., Bronder, J.L., Steeg, P.S., Yoneda, T., MacDonald, I.C., Chambers, A.F., Rutt, B.K., Foster, P.J.: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56(5), 1001–1010 (2006). https://doi.org/10.1002/mrm.21029

    Article  Google Scholar 

  68. Steichen, S.D., Caldorera-Moore, M., Peppas, N.A.: A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J. Pharm. Sci. 48(3), 416–427 (2013). https://doi.org/10.1016/j.ejps.2012.12.006

    Article  Google Scholar 

  69. Elmore, S.: Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35(4), 495–516 (2007). https://doi.org/10.1080/01926230701320337

    Article  Google Scholar 

  70. Balcer-Kubiczek, E.K.: Apoptosis in radiation therapy: a double-edged sword. Exp. Oncol. 34(3), 277–285 (2012)

    Google Scholar 

  71. Kaufmann, S.H., Earnshaw, W.C.: Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256(1), 42–49 (2000). https://doi.org/10.1006/excr.2000.4838

    Article  Google Scholar 

  72. Mouratidis, P.X., Rivens, I., Ter Haar, G.: A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. Int. J. Hyperthermia. 31(5), 476–488 (2015). https://doi.org/10.3109/02656736.2015.1029995

    Article  Google Scholar 

  73. Panzarini, E., Tenuzzo, B., Dini, L.: Photodynamic therapy-induced apoptosis of HeLa cells. Ann. N. Y. Acad. Sci. 1171, 617–626 (2009). https://doi.org/10.1111/j.1749-6632.2009.04908.x

    Article  Google Scholar 

  74. Zeng, W., Wang, X., Xu, P., Liu, G., Eden, H.S., Chen, X.: Molecular imaging of apoptosis: from micro to macro. Theranostics. 5(6), 559–582 (2015). https://doi.org/10.7150/thno.11548

    Article  Google Scholar 

  75. Marino, G., Kroemer, G.: Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 23(11), 1247–1248 (2013). https://doi.org/10.1038/cr.2013.115

    Article  Google Scholar 

  76. Blanco, V.M., Latif, T., Chu, Z., Qi, X.: Imaging and therapy of pancreatic cancer with phosphatidylserine-targeted nanovesicles. Transl. Oncol. 8(3), 196–203 (2015). https://doi.org/10.1016/j.tranon.2015.03.011

    Article  Google Scholar 

  77. Jung, H.-i., Kettunen, M.I., Davletov, B., Brindle, K.M.: Detection of apoptosis using the C2A domain of synaptotagmin I. Bioconjug. Chem. 15(5), 983–987 (2004). https://doi.org/10.1021/bc049899q

    Article  Google Scholar 

  78. Zhao, M., Beauregard, D.A., Loizou, L., Davletov, B., Brindle, K.M.: Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7(11), 1241–1244 (2001)

    Article  Google Scholar 

  79. García-Figueiras, R., Padhani, A.R., Baleato-González, S.: Therapy monitoring with functional and molecular MR imaging. Magn. Reson. Imaging Clin. N. Am. 24(1), 261–288 (2016). https://doi.org/10.1016/j.mric.2015.08.003

    Article  Google Scholar 

  80. Schroeder, M.A., Clarke, K., Neubauer, S., Tyler, D.J.: Hyperpolarized magnetic resonance: a novel technique for the in vivo assessment of cardiovascular disease. Circulation. 124(14), 1580–1594 (2011). https://doi.org/10.1161/circulationaha.111.024919

    Article  Google Scholar 

  81. van Zijl, P.C.M., Yadav, N.N.: Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn. Reson. Med. 65(4), 927–948 (2011). https://doi.org/10.1002/mrm.22761

    Article  Google Scholar 

  82. O'Connor, J.P., Jackson, A., Parker, G.J., Roberts, C., Jayson, G.C.: Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 9(3), 167–177 (2012). https://doi.org/10.1038/nrclinonc.2012.2 http://www.nature.com/nrclinonc/journal/v9/n3/suppinfo/nrclinonc.2012.2_S1.html

    Article  Google Scholar 

  83. Jacobson, O., Chen, X.: Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol. Rev. 65(4), 1214–1256 (2013). https://doi.org/10.1124/pr.113.007625

    Article  Google Scholar 

  84. Nishimura, K., Hida, S., Nishio, Y., Ohishi, K., Okada, Y., Okada, K., Yoshida, O., Nishimura, K., Nishibuchi, S.: The validity of magnetic resonance imaging (MRI) in the staging of bladder cancer: comparison with computed tomography (CT) and transurethral ultrasonography (US). Jpn. J. Clin. Oncol. 18(3), 217–226 (1988)

    Google Scholar 

  85. Ryu, J.S., Kim, J.S., Moon, D.H., Kim, S.M., Shin, M.J., Chang, J.S., Park, S.K., Han, D.J., Lee, H.K.: Bone SPECT is more sensitive than MRI in the detection of early osteonecrosis of the femoral head after renal transplantation. J. Nucl. Med. 43(8), 1006–1011 (2002)

    Google Scholar 

  86. Spanaki, M.V., Spencer, S.S., Corsi, M., MacMullan, J., Seibyl, J., Zubal, I.G.: Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J. Nucl. Med. 40(5), 730–736 (1999)

    Google Scholar 

  87. Wang, J., Maurer, L.: Positron emission tomography: applications in drug discovery and drug development. Curr. Top. Med. Chem. 5(11), 1053–1075 (2005)

    Article  Google Scholar 

  88. Rahmim, A., Zaidi, H.: PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29(3), 193–207 (2008). https://doi.org/10.1097/MNM.0b013e3282f3a515

    Article  Google Scholar 

  89. Malviya, G., Nayak, T.K.: PET imaging to monitor cancer therapy. Curr. Pharm. Biotechnol. 14(7), 669–682 (2013)

    Article  Google Scholar 

  90. Jacobson, O., Weiss, I., Wang, L., Wang, Z., Yang, X., Dewhurst, A., Ma, Y., Zhu, G., Niu, G., Kiesewetter, D.O., Vasdev, N., Liang, S., Chen, X.: 18F-labeled single-stranded DNA aA. for PET imaging of protein tyrosine Kinase-7 expression. J. Nucl. Med. (2015). https://doi.org/10.2967/jnumed.115.160960

  91. Weissleder, R.: Molecular imaging in cancer. Science (New York, N.Y.). 312(5777), 1168–1171 (2006). https://doi.org/10.1126/science.1125949

    Article  Google Scholar 

  92. Quon, A., Gambhir, S.S.: FDG-PET and beyond: molecular breast cancer imaging. J. Clin Oncol. 23(8), 1664–1673 (2005). https://doi.org/10.1200/jco.2005.11.024

    Article  Google Scholar 

  93. Avril, N., Sassen, S., Schmalfeldt, B., Naehrig, J., Rutke, S., Weber, W.A., Werner, M., Graeff, H., Schwaiger, M., Kuhn, W.: Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J. Clin Oncol. 23(30), 7445–7453 (2005). https://doi.org/10.1200/jco.2005.06.965

    Article  Google Scholar 

  94. Yaghoubi, S.S., Gambhir, S.S.: PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat. Protocols. 1(6), 3069–3074 (2007). http://www.nature.com/nprot/journal/v1/n6/suppinfo/nprot.2006.459_S1.html

    Article  Google Scholar 

  95. Folkman, J.: Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29(6 Suppl 16), 15–18 (2002). https://doi.org/10.1053/sonc.2002.37263

    Article  Google Scholar 

  96. Weis, S.M., Cheresh, D.A.: αv integrins in angiogenesis and cancer. Cold Spring Harb. Perspect. Med. 1(1), a006478 (2011). https://doi.org/10.1101/cshperspect.a006478

    Article  Google Scholar 

  97. Humphries, J.D., Byron, A., Humphries, M.J.: Integrin ligands at a glance. J. Cell Sci. 119(19), 3901–3903 (2006). https://doi.org/10.1242/jcs.03098

    Article  Google Scholar 

  98. Haubner, R., Kuhnast, B., Mang, C., Weber, W.A., Kessler, H., Wester, H.J., Schwaiger, M.: [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug. Chem. 15(1), 61–69 (2004). https://doi.org/10.1021/bc034170n

    Article  Google Scholar 

  99. Niu, G., Chen, X.: RGD PET: from lesion detection to therapy response monitoring. J. Nucl. Med. (2015). https://doi.org/10.2967/jnumed.115.168278

  100. Zheng, K., Liang, N., Zhang, J., Lang, L., Zhang, W., Li, S., Zhao, J., Niu, G., Li, F., Zhu, Z., Chen, X.: 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J. Nucl. Med. 56(12), 1823–1827 (2015). https://doi.org/10.2967/jnumed.115.160648

    Article  Google Scholar 

  101. Blankenberg, F.G., Katsikis, P.D., Tait, J.F., Davis, R.E., Naumovski, L., Ohtsuki, K., Kopiwoda, S., Abrams, M.J., Darkes, M., Robbins, R.C.: In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc. Natl. Acad. Sci. 95(11), 6349–6354 (1998)

    Article  Google Scholar 

  102. Kartachova, M., van Zandwijk, N., Burgers, S., van Tinteren, H., Verheij, M., Valdes Olmos, R.A.: Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer. J. Clin. Oncol. 25(18), 2534–2539 (2007). https://doi.org/10.1200/jco.2006.10.1337

    Article  Google Scholar 

  103. Koulov, A.V., Stucker, K.A., Lakshmi, C., Robinson, J.P., Smith, B.D.: Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ. 10(12), 1357–1359 (2003). https://doi.org/10.1038/sj.cdd.4401315

    Article  Google Scholar 

  104. Kwong, J.M.K., Hoang, C., Dukes, R.T., Yee, R.W., Gray, B.D., Pak, K.Y., Caprioli, J.: Bis(Zinc-Dipicolylamine), Zn-DPA, a new marker for apoptosis. Invest. Ophthalmol. Vis. Sci. 55(8), 4913–4921 (2014). https://doi.org/10.1167/iovs.13-13346

    Article  Google Scholar 

  105. Oltmanns, D., Zitzmann-Kolbe, S., Mueller, A., Bauder-Wuest, U., Schaefer, M., Eder, M., Haberkorn, U., Eisenhut, M.: Zn(II)-bis(cyclen) complexes and the imaging of apoptosis/necrosis. Bioconjug. Chem. 22(12), 2611–2624 (2011). https://doi.org/10.1021/bc200457b

    Article  Google Scholar 

  106. Khalil, M.M., Tremoleda, J.L., Bayomy, T.B., Gsell, W.: Molecular SPECT imaging: an overview. Int. J. Molecul. Imag. 2011, (2011). https://doi.org/10.1155/2011/796025

  107. Thorwarth, D.: Radiotherapy treatment planning based on functional PET/CT imaging data. Nucl. Med. Rev. 15(C), 43–47 (2012)

    Google Scholar 

  108. Currin, E., Linden, H.M., Mankoff, D.A.: Predicting breast Cancer endocrine responsiveness using molecular imaging. Curr. Breast Cancer Rep. 3(4), 205–211 (2011). https://doi.org/10.1007/s12609-011-0053-5

    Article  Google Scholar 

  109. Sun, Y., Yang, Z., Zhang, Y., Xue, J., Wang, M., Shi, W., Zhu, B., Hu, S., Yao, Z., Pan, H., Zhang, Y.: The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast Cancer patients. PLoS One. 10(1), e0116341 (2015). https://doi.org/10.1371/journal.pone.0116341

    Article  Google Scholar 

  110. Costas, B.: Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol. 20(10), 104020 (2009)

    Article  Google Scholar 

  111. Weissleder, R., Ntziachristos, V.: Shedding light onto live molecular targets. Nat. Med. 9(1), 123–128 (2003)

    Article  Google Scholar 

  112. Kulkarni, A., Rao, P., Natarajan, S., Goldman, A., Sabbisetti, V.S., Khater, Y., Korimerla, N., Chandrasekar, V., Mashelkar, R.A., Sengupta, S.: Reporter nanoparticle that monitors its anticancer efficacy in real time. Proc. Natl. Acad. Sci. 113(15), E2104–E2113 (2016). https://doi.org/10.1073/pnas.1603455113

    Article  Google Scholar 

  113. Kumar, R., Han, J., Lim, H.-J., Ren, W.X., Lim, J.-Y., Kim, J.-H., Kim, J.S.: Mitochondrial induced and self-monitored intrinsic apoptosis by antitumor Theranostic Prodrug: in vivo imaging and precise Cancer treatment. J. Am. Chem. Soc. 136(51), 17836–17843 (2014). https://doi.org/10.1021/ja510421q

    Article  Google Scholar 

  114. Buchwalow, I.B., Böcker, W.: Antibodies for immunohistochemistry. In: Immunohistochemistry: Basics and Methods, pp. 1–8. Springer, New York City, NY, USA (2010)

    Google Scholar 

  115. Nune, S.K., Gunda, P., Thallapally, P.K., Lin, Y.-Y., Forrest, M.L., Berkland, C.J.: Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 6(11), 1175–1194 (2009). https://doi.org/10.1517/17425240903229031

    Article  Google Scholar 

  116. Kim, K., Kim, J.H., Park, H., Kim, Y.S., Park, K., Nam, H., Lee, S., Park, J.H., Park, R.W., Kim, I.S., Choi, K., Kim, S.Y., Park, K., Kwon, I.C.: Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J. Control. Release. 146(2), 219–227 (2010). https://doi.org/10.1016/j.jconrel.2010.04.004

    Article  Google Scholar 

  117. Allison, R.R.: Photodynamic therapy: oncologic horizons. Future Oncol. 10(1), 123–124 (2014). https://doi.org/10.2217/fon.13.176

    Article  Google Scholar 

  118. Luo, S., Tan, X., Fang, S., Wang, Y., Liu, T., Wang, X., Yuan, Y., Sun, H., Qi, Q., Shi, C.: Mitochondria-targeted small-molecule fluorophores for dual modal Cancer phototherapy. Adv. Funct. Mater. 26(17), 2826–2835 (2016). https://doi.org/10.1002/adfm.201600159

    Article  Google Scholar 

  119. Wang, H., Chen, K., Niu, G., Chen, X.: Site-specifically biotinylated VEGF121 for near-infrared fluorescence imaging of tumor angiogenesis. Mol. Pharm. 6(1), 285–294 (2009). https://doi.org/10.1021/mp800185h

    Article  Google Scholar 

  120. Lee, S., Chen, X.: Dual-modality probes for in vivo molecular imaging. Mol. Imaging. 8(2), 87–100 (2009)

    Article  Google Scholar 

  121. Petrovsky, A., Schellenberger, E., Josephson, L., Weissleder, R., Bogdanov Jr., A.: Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res. 63(8), 1936–1942 (2003)

    Google Scholar 

  122. Ntziachristos, V., Schellenberger, E.A., Ripoll, J., Yessayan, D., Graves, E., Bogdanov, A., Josephson, L., Weissleder, R.: Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V–Cy5.5 conjugate. Proc. Natl. Acad. Sci. U. S. A. 101(33), 12294–12299 (2004). https://doi.org/10.1073/pnas.0401137101

    Article  Google Scholar 

  123. Lee, S., Choi, K.Y., Chung, H., Ryu, J.H., Lee, A., Koo, H., Youn, I.-C., Park, J.H., Kim, I.-S., Kim, S.Y., Chen, X., Jeong, S.Y., Kwon, I.C., Kim, K., Choi, K.: Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjug. Chem. 22(2), 125–131 (2011). https://doi.org/10.1021/bc1004119

    Article  Google Scholar 

  124. Chi, C., Du, Y., Ye, J., Kou, D., Qiu, J., Wang, J., Tian, J., Chen, X.: Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 4(11), 1072–1084 (2014). https://doi.org/10.7150/thno.9899

    Article  Google Scholar 

  125. Vahrmeijer, A.L., Hutteman, M., van der Vorst, J.R., van de Velde, C.J.H., Frangioni, J.V.: Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013). https://doi.org/10.1038/nrclinonc.2013.123

    Article  Google Scholar 

  126. Nguyen, Q.T., Tsien, R.Y.: Fluorescence-guided surgery with live molecular navigation [mdash] a new cutting edge. Nat. Rev. Cancer. 13(9), 653–662 (2013). https://doi.org/10.1038/nrc3566

    Article  Google Scholar 

  127. van Dam, G.M., Themelis, G., Crane, L.M.A., Harlaar, N.J., Pleijhuis, R.G., Kelder, W., Sarantopoulos, A., de Jong, J.S., Arts, H.J.G., van der Zee, A.G.J., Bart, J., Low, P.S., Ntziachristos, V.: Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat. Med. 17(10), 1315–1319 (2011). http://www.nature.com/nm/journal/v17/n10/abs/nm.2472.html#supplementary-information

    Article  Google Scholar 

  128. van der Vorst, J.R., Schaafsma, B.E., Hutteman, M., Verbeek, F.P., Liefers, G.J., Hartgrink, H.H., Smit, V.T., Lowik, C.W., van de Velde, C.J., Frangioni, J.V., Vahrmeijer, A.L.: Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 119(18), 3411–3418 (2013). https://doi.org/10.1002/cncr.28203

    Article  Google Scholar 

  129. Sugie, T., Sawada, T., Tagaya, N., Kinoshita, T., Yamagami, K., Suwa, H., Ikeda, T., Yoshimura, K., Niimi, M., Shimizu, A., Toi, M.: Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann. Surg. Oncol. 20(7), 2213–2218 (2013). https://doi.org/10.1245/s10434-013-2890-0

    Article  Google Scholar 

  130. Kim, H.S., Ahn, J.H., Chung, H.H., Kim, J.W., Park, N.H., Song, Y.S., Lee, H.P., Kim, Y.B.: Impact of intraoperative rupture of the ovarian capsule on prognosis in patients with early-stage epithelial ovarian cancer: a meta-analysis. Eur. J. Surg. Oncol. 39(3), 279–289 (2013). https://doi.org/10.1016/j.ejso.2012.12.003

    Article  Google Scholar 

  131. Azarpira, N., Asadi, N., Torabineghad, S., Taghipour, M.: Metastatic malignant melanoma intraoperative imprint cytology of brain tumor. J. Cytol. 29(3), 192–193 (2012). https://doi.org/10.4103/0970-9371.101170

    Article  Google Scholar 

  132. Crane, L.M., Themelis, G., Arts, H.J., Buddingh, K.T., Brouwers, A.H., Ntziachristos, V., van Dam, G.M., van der Zee, A.G.: Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol. Oncol. 120(2), 291–295 (2011). https://doi.org/10.1016/j.ygyno.2010.10.009

    Article  Google Scholar 

  133. Baldauf, J., Muller, J.U., Fleck, S., Hinz, P., Chiriac, A., Schroeder, H.W.: The value of intraoperative three dimensional fluoroscopy in anterior decompressive surgery of the cervical spine. Zentralbl. Neurochir. 69(1), 30–34 (2008). https://doi.org/10.1055/s-2007-992796

    Article  Google Scholar 

  134. Kircher, M.F., Mahmood, U., King, R.S., Weissleder, R., Josephson, L.: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63(23), 8122–8125 (2003)

    Google Scholar 

  135. Kircher, M.F., de la Zerda, A., Jokerst, J.V., Zavaleta, C.L., Kempen, P.J., Mittra, E., Pitter, K., Huang, R., Campos, C., Habte, F., Sinclair, R., Brennan, C.W., Mellinghoff, I.K., Holland, E.C., Gambhir, S.S.: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18(5), 829–834 (2012). http://www.nature.com/nm/journal/v18/n5/abs/nm.2721.html#supplementary-information

  136. Cherry, S.R.: Multimodality in vivo imaging systems: twice the power or double the trouble? Annu. Rev. Biomed. Eng. 8(1), 35–62 (2006). https://doi.org/10.1146/annurev.bioeng.8.061505.095728

    Article  Google Scholar 

  137. Louie, A.: Multimodality imaging probes: design and challenges. Chem. Rev. 110(5), 3146–3195 (2010). https://doi.org/10.1021/cr9003538

    Article  Google Scholar 

  138. Pomper, M.G., Gelovani, J.G.: Molecular Imaging in Oncology. Informa Health Care, New York (2008)

    Book  Google Scholar 

  139. Ell, P.J.: The contribution of PET/CT to improved patient management. Br. J. Radiol. 79(937), 32–36 (2006). https://doi.org/10.1259/bjr/18454286

    Article  Google Scholar 

  140. Tsukamoto, E., Ochi, S.: PET/CT today: system and its impact on cancer diagnosis. Ann. Nucl. Med. 20(4), 255–267 (2006)

    Article  Google Scholar 

  141. Cherry, S.R., Louie, A.Y., Jacobs, R.E.: The integration of positron emission tomography with magnetic resonance imaging. Proc. IEEE. 96(3), 416–438 (2008)

    Article  Google Scholar 

  142. Jarrett, B.R., Gustafsson, B., Kukis, D.L., Louie, A.Y.: Synthesis of (64)cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem. 19(7), 1496–1504 (2008). https://doi.org/10.1021/bc800108v

    Article  Google Scholar 

  143. Lee, H.-Y., Li, Z., Chen, K., Hsu, A.R., Xu, C., Xie, J., Sun, S., Chen, X.: PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled Iron oxide nanoparticles. J. Nucl. Med. 49(8), 1371–1379 (2008). https://doi.org/10.2967/jnumed.108.051243

    Article  Google Scholar 

  144. Cai, W., Chen, K., Li, Z.B., Gambhir, S.S., Chen, X.: Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 48(11), 1862–1870 (2007). https://doi.org/10.2967/jnumed.107.043216

    Article  Google Scholar 

  145. Phillips, E., Penate-Medina, O., Zanzonico, P.B., Carvajal, R.D., Mohan, P., Ye, Y., Humm, J., Gönen, M., Kalaigian, H., Schöder, H., Strauss, H.W., Larson, S.M., Wiesner, U., Bradbury, M.S.: Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6(260), 260ra149-260ra149 (2014). https://doi.org/10.1126/scitranslmed.3009524

    Article  Google Scholar 

  146. Xie, R., Peng, X.: Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 131(30), 10645–10651 (2009)

    Article  Google Scholar 

  147. Wang, H.-F., He, Y., Ji, T.-R., Yan, X.-P.: Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal. Chem. 81(4), 1615–1621 (2009)

    Article  Google Scholar 

  148. Santra, P.K., Kamat, P.V.: Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)

    Article  Google Scholar 

  149. Fang, M., Peng, C.-w., Pang, D.-W., Li, Y.: Quantum dots for Cancer research: current status, remaining issues, and future perspectives. Cancer Biol. Med. 9(3), 151–163 (2012). https://doi.org/10.7497/j.issn.2095-3941.2012.03.001

    Article  Google Scholar 

  150. Bourlinos, A.B., Bakandritsos, A., Kouloumpis, A., Gournis, D., Krysmann, M., Giannelis, E.P., Polakova, K., Safarova, K., Hola, K., Zboril, R.: Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22(44), 23327–23330 (2012). https://doi.org/10.1039/C2JM35592B

    Article  Google Scholar 

  151. Nie, L., Wang, S., Wang, X., Rong, P., Ma, Y., Liu, G., Huang, P., Lu, G., Chen, X.: In vivo volumetric Photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small. 10(8), 1585–1593 (2014). https://doi.org/10.1002/smll.201302924

    Article  Google Scholar 

  152. Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101 (2006). https://doi.org/10.1063/1.2195024

    Article  Google Scholar 

  153. Mallidi, S., Luke, G.P., Emelianov, S.: Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29(5), 213–221 (2011). https://doi.org/10.1016/j.tibtech.2011.01.006

    Article  Google Scholar 

  154. Laufer, J., Johnson, P., Zhang, E., Treeby, B., Cox, B., Pedley, B., Beard, P.: In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17(5), 056016 (2012). https://doi.org/10.1117/1.jbo.17.5.056016

    Article  Google Scholar 

  155. Zhang, H.F., Maslov, K., Sivaramakrishnan, M., Stoica, G., Wang, L.V.: Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl. Phys. Lett. 90(5), 053901 (2007). https://doi.org/10.1063/1.2435697

    Article  Google Scholar 

  156. Wang, Z., Huang, P., Jacobson, O., Wang, Z., Liu, Y., Lin, L., Lin, J., Lu, N., Zhang, H., Tian, R., Niu, G., Liu, G., Chen, X.: Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano. 10(3), 3453–3460 (2016). https://doi.org/10.1021/acsnano.5b07521

    Article  Google Scholar 

  157. McCarthy, J.R.: The future of theranostic nanoagents. Nanomedicine. 4(7), 693–695 (2009). https://doi.org/10.2217/nnm.09.58

    Article  Google Scholar 

  158. Liang, K., Liu, F., Fan, J., Sun, D., Liu, C., Lyon, C.J., Bernard, D.W., Li, Y., Yokoi, K., Katz, M.H., Koay, E.J., Zhao, Z., Hu, Y.: Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1, 0021 (2017). https://doi.org/10.1038/s41551-016-0021 http://www.nature.com/articles/s41551-016-0021#supplementary-information

    Article  Google Scholar 

  159. Maiti, S., Sen, K.K.: Bio-Targets and Drug Delivery Approaches. CRC Press LLC, Boca Raton, FL, USA (2016)

    Google Scholar 

  160. Chow, E.K.-H., Ho, D.: Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5(216), 216rv214-216rv214 (2013). https://doi.org/10.1126/scitranslmed.3005872

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the College of Engineering and Mathematics, University of Vermont; MOST of China (Grant Nos. 2017YFA0205201, 2014CB744503, and 2013CB733802); the NSFC under Grant Nos. 81422023, 81371596, 51273165, U1705281, and U1505221; the Program for New Century Excellent Talents in University (NCET-13-0502); the Fundamental Research Funds for the Central Universities, China (20720150206 and 20720150141); and the Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Xiaoyuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miao, T., Floreani, R.A., Liu, G., Chen, X. (2019). Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics