Skip to main content

A Resource Allocation Scheme for Multi-user MmWave Vehicle-to-Infrastructure Communication

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2018 (FTC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 881))

Included in the following conference series:

Abstract

Millimeter wave (mmWave) communications is increasingly seen as a means to meet the communication constraints demanded by the emerging Intelligent Transportation Systems (ITSs) applications. In this paper, a novel directional MAC protocol is designed that encompasses a resource allocation strategy unique to the mmWave Vehicle-to-Infrastructure (V2I) network in an urban setting. We specifically consider a network where each Base Station (BS), equipped with hybrid beamforming antenna arrays, concurrently serves multiple vehicles. Using models for the coherence bandwidth and coherence time specific to the mmWave vehicular channel, a robust resource allocation scheme is provided that the BS utilizes towards efficient multiuser scheduling. The novelty is in the multi-users scenario, time-frequency resource allocation designed specifically for the mmWave channel. To evaluate the network, a channel simulator is entirely built in MATLAB to carry out the link layer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, J., Va, V., Gonzalez-Prelcic, N., Daniels, R., Bhat, C.R., Heath, R.W.: Millimeter-wave vehicular communication to support massive automotive sensing. IEEE Commun. Mag. 54(12), 160–167 (2016)

    Article  Google Scholar 

  2. Uhlemann, E.: Connected-vehicles applications are emerging [connected vehicles]. IEEE Veh. Technol. Mag. 11(1), 25–96 (2016)

    Article  Google Scholar 

  3. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M., Thrun, S.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168, June 2011

    Google Scholar 

  4. Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  5. Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)

    Article  Google Scholar 

  6. Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [invited paper]. IEEE Commun. Mag. 52(12), 132–141 (2014)

    Article  Google Scholar 

  7. Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)

    Article  Google Scholar 

  8. Akdeniz, M.R., Liu, Y., Samimi, M.K., Sun, S., Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014)

    Article  Google Scholar 

  9. Maltsev, A., Sadri, A., Pudeyev, A., Bolotin, I.: Highly directional steerable antennas: high-gain antennas supporting user mobility or beam switching for reconfigurable backhauling. IEEE Veh. Technol. Mag. 11(1), 32–39 (2016)

    Article  Google Scholar 

  10. Gonzalez Prelcic, N., Ali, A., Va, V., Heath Jr., R.W.: Millimeter wave communication with out-of-band information. ArXiv e-prints, March 2017

    Article  Google Scholar 

  11. Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., Zorzi, M.: Millimeter wave cellular networks: a MAC layer perspective. IEEE Trans. Commun. 63(10), 3437–3458 (2015)

    Article  Google Scholar 

  12. Rappaport, T., Heath, R., Daniels, R., Murdock, J.: Millimeter wave wireless communications. In: Communication Engineering and Emerging Technologies. Prentice Hall (2014). https://books.google.com/books?id=_Tt_BAAAQBAJ

  13. Haneda, K., Tian, L., Zheng, Y., Asplund, H., Li, J., Wang, Y., Steer, D., Li, C., Balercia, T., Lee, S., Kim, Y., Ghosh, A., Thomas, T.A., Nakamura, T., Kakishima, Y., Imai, T., Papadopoulos, H.C., Rappaport, T.S., Maccartney Jr., G.R., Samimi, M.K., Sun, S., Koymen, O.H., Hur, S., Park, J., Zhang, J.C., Mellios, E., Molisch, A.F., Ghassamzadah, S.S., Ghosh, A.: 5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments, CoRR, vol. abs/1602.07533 (2016). http://arxiv.org/abs/1602.07533

  14. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  15. Simic, L., Perpinias, N., Petrova, M.: 60 GHz outdoor urban measurement study of the feasibility of multi-Gbps mmwave cellular networks. In: IEEE Conference on Computer Communications Workshops, INFOCOM Workshops 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 554–559 (2016). https://doi.org/10.1109/INFCOMW.2016.7562138

  16. Mehrpouyan, H., Khanzadi, M.R., Matthaiou, M., Sayeed, A.M., Schober, R., Hua, Y.: Improving bandwidth efficiency in E-band communication systems. IEEE Commun. Mag. 52(3), 121–128 (2014)

    Article  Google Scholar 

  17. Stuber, G.L.: Principles of Mobile Communication, 2nd edn. Kluwer Academic Publishers, Norwell (2001)

    MATH  Google Scholar 

  18. Dadgarpour, A., Zarghooni, B., Virdee, B.S., Denidni, T.A.: One- and two-dimensional beam-switching antenna for millimeterwave mimo applications. IEEE Trans. Antennas Propag. 64(2), 564–573 (2016)

    Article  Google Scholar 

  19. Va, V., Zhang, X., Heath, R.W.: Beam switching for millimeter wave communication to support high speed trains. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), pp. 1–5, September 2015

    Google Scholar 

  20. Alkhateeb, A., Ayach, O.E., Leus, G., Heath, R.W.: Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: Information Theory and Applications Workshop (ITA), pp. 1–5, February 2013

    Google Scholar 

  21. Heath, R.W., Gonzlez-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave mimo systems. IEEE J. Sel. Top. Signal Process. 10(3), 436–453 (2016)

    Article  Google Scholar 

  22. Alkhateeb, A., Leus, G., Heath, R.W.: Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans. Wirel. Commun. 14(11), 6481–6494 (2015)

    Article  Google Scholar 

  23. Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K., Heath Jr., R.W.: Modeling and analyzing millimeter wave cellular systems, CoRR, vol. abs/1605.04283 (2016). http://arxiv.org/abs/1605.04283

  24. Barati, C.N., Hosseini, S.A., Rangan, S., Liu, P., Korakis, T., Panwar, S.S., Rappaport, T.S.: Directional cell discovery in millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 14(12), 6664–6678 (2015)

    Article  Google Scholar 

  25. Shokri-Ghadikolaei, H., Fischione, C., Popovski, P., Zorzi, M.: Design aspects of short-range millimeter-wave networks: a MAC layer perspective. IEEE Netw. 30(3), 88–96 (2016)

    Article  Google Scholar 

  26. Va, V., Choi, J., Heath, R.: The impact of beamwidth on temporal channel variation in vehicular channels and its implications. IEEE Trans. Veh. Technol. PP(99), 1 (2016)

    Google Scholar 

  27. Hammoudeh, A., Scammell, D.: Measurements and characterisation of RMS delay spread and coherence bandwidth in indoor radio channel at millimetre waves. In: 7th IEEE High Frequency Postgraduate Student Colloquium, p. 7 (2002)

    Google Scholar 

  28. Sanchez, M.G., Hammoudeh, A., Grindrod, E., Siamarou, A.: Coherence bandwidth measurements and analysis for millimetre-wave mobile communications. In: IEE National Conference on Antennas and Propagation, pp. 89-92, April 1999

    Google Scholar 

  29. Hmimy, H.H., Gupta, S.C.: Statistical model of delay spread and coherence bandwidth for wide-band pcs at millimeter-waves in an urban mobile radio environment. In: IEEE International Conference in Communications, ICC 96, Conference Record, Converging Technologies for Tomorrows Applications, vol. 2, pp. 1232–1235, Jun 1996

    Google Scholar 

  30. Samimi, M.K., Rappaport, T.S.: Local multipath model parameters for generating 5G millimeter-wave 3G-like channel impulse response. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, April 2016

    Google Scholar 

  31. MacCartney, G.R., Samimi, M.K., Rappaport, T.S.: Exploiting directionality for millimeter-wave wireless system improvement. In: 2015 IEEE International Conference on Communications (ICC), pp. 2416–2422, June 2015

    Google Scholar 

  32. Kim, J.H., Yoon, Y.K., Chong, Y.J., Hong, H.J.: Millimeterwave delay spread measurement and simulation at LoS urban lowrise environments. In: 2015 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1194-1196, October 2015

    Google Scholar 

  33. Thomas, H.J., Cole, R.S., Siqueira, G.L.: An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment. IEEE Trans. Veh. Technol. 43(1), 140–146 (1994)

    Article  Google Scholar 

  34. Jylanki, J.: A thousand ways to pack the bin a practical approach to two-dimensional rectangle bin packing (2010). https://github.com/juj/RectangleBinPack

  35. Evolved Universal Terrestrial Radio Access: Further advancements for E-UTRA physical layer aspects, 3GPP Technical Specification TR, vol. 36 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramanian, R. (2019). A Resource Allocation Scheme for Multi-user MmWave Vehicle-to-Infrastructure Communication. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2018. FTC 2018. Advances in Intelligent Systems and Computing, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-02683-7_39

Download citation

Publish with us

Policies and ethics