Skip to main content

Droplet Size-Aware High-Level Synthesis

  • Chapter
  • First Online:
Micro-Electrode-Dot-Array Digital Microfluidic Biochips
  • 352 Accesses

Abstract

Due to the inherent differences between today’s digital microfluidic biochips and micro-electrode-dot-array (MEDA) biochips, existing synthesis solutions for biochemistry mapping cannot be utilized for MEDA biochips. This chapter presents the first synthesis approach that can be used for MEDA biochips. A general analytical model for droplet velocity is proposed and experimentally validated using fabricated MEDA biochips. A synthesis method targeting reservoir placement, operation scheduling, module placement, routing of droplets of various sizes, and diagonal movement of droplets in a two-dimensional array is then presented for MEDA biochips. Simulation results using benchmarks and experimental results using a fabricated MEDA biochip demonstrate the effectiveness of the proposed synthesis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakrabarty, K. (2010). Design automation and test solutions for digital microfluidic biochips. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 4–17.

    Article  MathSciNet  Google Scholar 

  2. Su, F., & Chakrabarty, K. (2005). Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 825–830.

    Google Scholar 

  3. Tao, X., & Chakrabarty, K. (2006). Module placement for fault-tolerant microfluidics-based biochips. ACM Transactions on Design Automation of Electronic Systems, 11(3), 682–710.

    Article  Google Scholar 

  4. Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In ACM/IEEE Design Automation Conference, 948–953.

    Google Scholar 

  5. Maftei, E., Pop, P., & Madsen, J. (2009). Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips. In Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, pp. 195–204.

    Google Scholar 

  6. Grissom, D., & Brisk, P. (2012). Fast online synthesis of generally programmable digital microfluidic biochips. In Proceedings of IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 413–422.

    Chapter  Google Scholar 

  7. Chen, Y.-H., Hsu, C.-L., Tsai, L.-C., Huang, T.-W., & Ho, T.-Y. (2013). A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3-d deferred decision making technique. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1151–1162.

    Article  Google Scholar 

  8. Keszocze, O., Wille, R., Ho, T.-Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6.

    Google Scholar 

  9. O’neal, K., Grissom, D., & Brisk, P. (2017). Resource-constrained scheduling for digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, 14(1), 7.

    Google Scholar 

  10. Su, F., & Chakrabarty, K. (2008). High-level synthesis of digital microfluidic biochips. ACM Journal on Emerging Technologies in Computing Systems, 3(4), 1.

    Article  Google Scholar 

  11. Ibrahim, M., Li, Z., & Chakrabarty, K. (2015). Advances in design automation techniques for digital-microfluidic biochips. In Formal Modeling and Verification of Cyber-Physical Systems, pp. 190–223.

    Chapter  Google Scholar 

  12. Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 26–35.

    Google Scholar 

  13. Ricketts, A. J., Irick, K., Vijaykrishnan, N., & Irwin, M. J. (2006). Priority scheduling in digital microfluidics-based biochips. In Proceedings of Design, Automation and Test Conference in Europe, pp. 329–334.

    Google Scholar 

  14. Wang, G., Teng, D., & Fan, S.-K. (2011). Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160.

    Article  Google Scholar 

  15. Wang, G., Teng, D., Lai, Y.-T., Lu, Y.-W., Ho, Y., & Lee, C.-Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8(3), 163–171.

    Article  Google Scholar 

  16. Lai, K. Y.-T., Yang, Y.-T., & Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78(1), 85–93.

    Article  Google Scholar 

  17. Bahadur, V., & Garimella, S. (2006). An energy-based model for electrowetting-induced droplet actuation. Journal of Micromechanics and Microengineering, 16(8), 1494.

    Article  Google Scholar 

  18. Oprins, H., Vandevelde, B., & Baelmans, M. (2012). Modeling and control of electrowetting induced droplet motion. Micromachines, 3, 150–167.

    Article  Google Scholar 

  19. Bhattacharjee, B., & Najjaran, H. (2009). Size dependent droplet actuation in digital microfluidic systems. In SPIE Defense, Security, and Sensing, pp. 73 180H–73 180H.

    Google Scholar 

  20. Ren, H., Fair, R. B., Pollack, M. G., & Shaughnessy, E. J. (2002). Dynamics of electro-wetting droplet transport. Sensors and Actuators B: Chemical, 87(1), 201–206.

    Article  Google Scholar 

  21. Lai, K. Y.-T., Shiu, M.-F., Lu, Y.-W., Ho, Y.-C., Kao, Y.-C., Yang, Y.-T., et al. (2015). A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35 μm standard CMOS process. In Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 1–4.

    Google Scholar 

  22. Luo, Y., Bhattacharya, B. B., Ho, T.-Y., & Chakrabarty, K. (2015). Design and optimization of a cyberphysical digital-microfluidic biochip for the polymerase chain reaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34, 29–42.

    Article  Google Scholar 

  23. Li, Z., Ho, T.-Y., & Chakrabarty, K. (2016). Optimization of 3D digital microfluidic biochips for the multiplexed polymerase chain reaction. ACM Transactions on Design Automation of Electronic Systems, 21, 25:1–27.

    Article  Google Scholar 

  24. Xu, T., & Chakrabarty, K. (2008). Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference, pp. 173–178.

    Google Scholar 

  25. Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Proceedings of IEEE/ACM Design, Automation and Test Conference in Europe, 1, pp. 1–6.

    Google Scholar 

  26. Chen, Z., Teng, D. H.-Y., Wang, G. C.-J., & Fan, S.-K. (2011). Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture. Biochip Journal, 5(4), 343–352.

    Article  Google Scholar 

  27. Lee, C. (1961). An algorithm for path connections and its applications. IRE Transactions on Electronic Computers, EC-10, 346–365.

    Article  MathSciNet  Google Scholar 

  28. Sherwani, N. A. (2012). Algorithms for VLSI Physical Design Automation. New York: Springer Science and Business Media.

    MATH  Google Scholar 

  29. Fei, S. (2004). Module placement for fault-tolerant microfluidics-based biochips. ACM Transactions on Design Automation of Electronic Systems, 11(3), 682–710.

    Google Scholar 

  30. Roy, S., Bhattacharya, B. B., Chakrabarti, P. P., & Chakrabarty, K. (2011). Layout-aware solution preparation for biochemical analysis on a digital microfluidic biochip. In Proceedings of IEEE International Conference on VLSI Design, pp. 171–176.

    Google Scholar 

  31. Alistar, M., & Pop, P. (2015). Synthesis of biochemical applications on digital microfluidic biochips with operation execution time variability. Integration, the VLSI Journal, 51, 158–168.

    Article  Google Scholar 

  32. Luo, Y., Chakrabarty, K., & Ho, T.-Y. (2013). Error recovery in cyberphysical digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1), 59–72.

    Article  Google Scholar 

  33. Li, Z., Lai, K. Y.-T., Yu, P.-H., Ho, T.-Y., Chakrabarty, K., & Lee, C.-Y. (2016). High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Proceedings of ACM/IEEE Design Automation Conference (pp. 146:1–146:6). New York: ACM.

    Google Scholar 

  34. [Online video], http://people.duke.edu/%7ezl67/videos/1.mp4.

  35. [Online video], http://people.duke.edu/%7ezl67/videos/2.mp4.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Chakrabarty, K., Ho, TY., Lee, CY. (2019). Droplet Size-Aware High-Level Synthesis. In: Micro-Electrode-Dot-Array Digital Microfluidic Biochips. Springer, Cham. https://doi.org/10.1007/978-3-030-02964-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02964-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02963-0

  • Online ISBN: 978-3-030-02964-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics