Skip to main content

Motion Estimation Made Easy: Evolution and Trends in Visual Odometry

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 804))

Abstract

With rapid advancements in the area of mobile robotics and industrial automation, a growing need has arisen towards accurate navigation and localization of moving objects. Camera-based motion estimation is one such technique which is gaining huge popularity owing to its simplicity and use of limited resources in generating motion path. In this chapter, an attempt is made to introduce this topic for beginners covering different aspects of vision-based motion estimation task. The theoretical section provides a brief on different computer vision fundamentals specific to pose estimation task followed by a systematic discussion on the visual odometry (VO) schemes under different categories. The evolution of VO schemes over last few decades is discussed under two broad categories, that is, geometric and non-geometric approaches. The geometric approaches are further detailed under three different classes, that is, feature-based, appearance-based, and a hybrid of feature and appearance based schemes. The non-geometric approach is one of the recent paradigm shift from conventional pose estimation technique and is discussed in a separate section. Towards the end, a list of different datasets for visual odometry and allied research areas are provided for a ready reference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Stanford University California Dept of Computer Science, Technical report (1980)

    Google Scholar 

  2. Kaess, M., Ni, K., Dellaert, F.: Flow separation for fast and robust stereo odometry. In: International Conference on Robotics and Automation (ICRA), pp. 3539–3544. IEEE (2009)

    Google Scholar 

  3. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, Vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: European Conference on Computer Vision, pp. 404–417. Springer (2006)

    Google Scholar 

  5. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  6. Alismail, H., Browning, B., Lucey, S.: Bit-planes: dense Subpixel Alignment of Binary Descriptors (2016). arXiv:1602.00307

  7. Jaramillo, C.: Direct multichannel tracking. In: International Conference on 3D Vision (3DV), pp. 347–355. IEEE (2017)

    Google Scholar 

  8. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: faster image transform estimation by using matching priors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1523–1535 (2005)

    Article  Google Scholar 

  11. Nistér, D.: Preemptive ransac for live structure and motion estimation. Mach. Vis. Appl. 16(5), 321–329 (2005)

    Article  Google Scholar 

  12. Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In: European Conference on Computer Vision, pp. 500–513. Springer (2008)

    Google Scholar 

  13. More, R., Kottath, R., Jegadeeshwaran, R., Kumar, V., Karar, V., Poddar, S.: Improved pose estimation by inlier refinement for visual odometry. In: International Conference on Sensing, Signal Processing and Security (ICSSS), pp. 224–228. IEEE (2017)

    Google Scholar 

  14. Hirschmuller, H., Innocent, P.R., Garibaldi, J.M.: Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics. In: International Conference on Control, Automation, Robotics and Vision, ICARCV, vol. 2, pp. 1099–1104. IEEE (2002)

    Google Scholar 

  15. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3946–3952. IEEE (2008)

    Google Scholar 

  16. Huang, T.S., Netravali, A.N.: Motion and structure from feature correspondences: a review. Proc IEEE 82(2), 252–268 (1994)

    Article  Google Scholar 

  17. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Article  Google Scholar 

  18. De-Maeztu, L., Elordi, U., Nieto, M., Barandiaran, J., Otaegui, O.: A temporally consistent grid-based visual odometry framework for multi-core architectures. J. Real-Time Image Process 10(4), 759–769 (2015)

    Article  Google Scholar 

  19. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133 (1981)

    Article  Google Scholar 

  20. Aggarwal, J., Nandhakumar, N.: On the computation of motion from sequences of images-a review. Proc. IEEE 76(8), 917–935 (1988)

    Article  Google Scholar 

  21. DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)

    Article  Google Scholar 

  22. Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  23. Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part II: matching, robustness, optimization, and applications. IEEE Robot. Automat. Mag. 19(2), 78–90 (2012)

    Article  Google Scholar 

  24. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  25. Aqel, M.O., Marhaban, M.H., Saripan, M.I., Ismail, N.B.: Review of visual odometry: types, approaches, challenges, and applications. SpringerPlus 5(1), 1897 (2016)

    Article  Google Scholar 

  26. Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R.: An overview to visual odometry and visual SLAM: applications to mobile robotics. Intell. Ind. Syst. 1(4), 289–311 (2015)

    Article  Google Scholar 

  27. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art (2017). arXiv:1704.05519

  28. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. 24(5), 1015–1026 (2008)

    Article  Google Scholar 

  29. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: Low-drift, robust, and fast. In: International Conference on Robotics and Automation (ICRA), pp. 2174–2181. IEEE (2015)

    Google Scholar 

  30. Agrawal, M., Konolige, K.: Real-time localization in outdoor environments using stereo vision and inexpensive gps. In: International Conference on Pattern Recognition (ICPR), Vol. 3, pp. 1063–1068. IEEE (2006)

    Google Scholar 

  31. Gonzalez, R., Rodriguez, F., Guzman, J.L., Pradalier, C., Siegwart, R.: Combined visual odometry and visual compass for off-road mobile robots localization. Robotica 30(6), 865–878 (2012)

    Article  Google Scholar 

  32. Sünderhauf, N., Protzel, P.: Stereo Odometry—A Review of Approaches. Chemnitz University of Technology Technical Report (2007)

    Google Scholar 

  33. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  34. Khan, N.H., Adnan, A.: Ego-motion estimation concepts, algorithms and challenges: an overview. Multimed. Tools Appl. 76(15), 16581–16603 (2017)

    Article  Google Scholar 

  35. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Robot. Autom. 3(3), 239–248 (1987)

    Article  Google Scholar 

  36. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Stereo ego-motion improvements for robust rover navigation. In: International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1099–1104. IEEE (2001)

    Google Scholar 

  37. Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int. J. Robot. Res. 21(8), 735–758 (2002)

    Article  Google Scholar 

  38. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I–I. IEEE (2004)

    Google Scholar 

  39. Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. Photogramm. Comput. Vis. 2 (2006)

    Google Scholar 

  40. Tardif, J.P., Pavlidis, Y., Daniilidis, K.: Monocular visual odometry in urban environments using an omnidirectional camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2531–2538. IEEE (2008)

    Google Scholar 

  41. Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. J. Math. Imaging Vis. 39(3), 259–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Naroditsky, O., Zhou, X.S., Gallier, J., Roumeliotis, S.I., Daniilidis, K.: Two efficient solutions for visual odometry using directional correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 818–824 (2012)

    Article  Google Scholar 

  43. Scaramuzza, D.: 1-point-RANSAC structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vis. 95(1), 74–85 (2011)

    Article  Google Scholar 

  44. Hee Lee, G., Faundorfer, F., Pollefeys, M.: Motion estimation for self-driving cars with a generalized camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2746–2753 (2013)

    Google Scholar 

  45. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In: Intelligent Vehicles Symposium (IV), pp. 486–492. IEEE (2010)

    Google Scholar 

  46. Desai, A., Lee, D.J.: Visual odometry drift reduction using syba descriptor and feature transformation. IEEE Trans. Intell. Transp. Syst. 17(7), 1839–1851 (2016)

    Article  Google Scholar 

  47. Gomez-Ojeda, R., Gonzalez-Jimenez, J.: Robust stereo visual odometry through a probabilistic combination of points and line segments. In: International Conference on Robotics and Automation (ICRA), pp. 2521–2526. IEEE (2016)

    Google Scholar 

  48. Schmidt, A., Kraft, M., Kasiński, A.: An evaluation of image feature detectors and descriptors for robot navigation. In: International Conference on Computer Vision and Graphics, pp. 251–259. Springer (2010)

    Google Scholar 

  49. Jiang, Y., Xu, Y., Liu, Y.: Performance evaluation of feature detection and matching in stereo visual odometry. Neurocomputing 120, 380–390 (2013)

    Article  Google Scholar 

  50. Chien, H.J., Chuang, C.C., Chen, C.Y., Klette, R.: When to use what feature? SIFT, SURF, ORB, or A-KAZE features for monocular visual odometry. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2016)

    Google Scholar 

  51. Witt, J., Weltin, U.: Robust stereo visual odometry using iterative closest multiple lines. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4164–4171. IEEE (2013)

    Google Scholar 

  52. Koletschka, T., Puig, L., Daniilidis, K.: MEVO: Multi-environment stereo visual odometry. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4981–4988. IEEE (2014)

    Google Scholar 

  53. Cvišić, I., Petrović, I.: Stereo odometry based on careful feature selection and tracking. In: European Conference on Mobile Robots (ECMR), pp. 1–6. IEEE (2015)

    Google Scholar 

  54. Kitt, B., Moosmann, F., Stiller, C.: Moving on to dynamic environments: visual odometry using feature classification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5551–5556. IEEE (2010)

    Google Scholar 

  55. Zhou, W., Fu, H., An, X.: A classification-based visual odometry approach. In: International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 2, pp. 85–89. IEEE (2016)

    Google Scholar 

  56. de la Escalera, A., Izquierdo, E., Martín, D., Musleh, B., García, F., Armingol, J.M.: Stereo visual odometry in urban environments based on detecting ground features. Robot. Auton. Syst. 80, 1–10 (2016)

    Article  Google Scholar 

  57. Kottath, R., Yalamandala, D.P., Poddar, S., Bhondekar, A.P., Karar, V.: Inertia constrained visual odometry for navigational applications. In: International Conference on Image Information Processing (ICIIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  58. Badino, H., Yamamoto, A., Kanade, T.: Visual odometry by multi-frame feature integration. In: IEEE International Conference on Computer Vision Workshops, pp. 222–229 (2013)

    Google Scholar 

  59. Krešo, I., Šegvic, S.: Improving the egomotion estimation by correcting the calibration bias. In: International Conference on Computer Vision Theory and Applications (2015)

    Google Scholar 

  60. Bellavia, F., Fanfani, M., Colombo, C.: Selective visual odometry for accurate AUV localization. Auton. Robot. 41(1), 133–143 (2017)

    Article  Google Scholar 

  61. Liu, Y., Gu, Y., Li, J., Zhang, X.: Robust stereo visual odometry using improved RANSAC-based methods for mobile robot localization. Sensors 17(10), 2339 (2017)

    Article  Google Scholar 

  62. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  63. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: European Conference on Computer Vision, pp. 269–282. Springer (2010)

    Google Scholar 

  64. Li, B., Heng, L., Lee, G.H., Pollefeys, M.: A 4-Point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1601. IEEE (2013)

    Google Scholar 

  65. Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 327–341 (2017)

    Article  Google Scholar 

  66. Guan, B., Vasseur, P., Demonceaux, C., Fraundorfer, F.: Visual odometry using a homography formulation with decoupled rotation and translation estimation using minimal solutions. In: International Conference on Robotics and Automation, ICRA (2018)

    Google Scholar 

  67. Thanh, T.N., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yachida, M., Yagi, Y.: Robust and real-time egomotion estimation using a compound omnidirectional sensor. In: International Conference on Robotics and Automation (ICRA), pp. 492–497. IEEE (2008)

    Google Scholar 

  68. Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: International Conference on Computer Vision, pp. 959–966. IEEE (1998)

    Google Scholar 

  69. Mandelbaum, R., Salgian, G., Sawhney, H.: Correlation-based estimation of ego-motion and structure from motion and stereo. In: International Conference on Computer Vision, vol. 1, pp. 544–550. IEEE (1999)

    Google Scholar 

  70. Nourani-Vatani, N., Roberts, J., Srinivasan, M.V.: Practical visual odometry for car-like vehicles. In: International Conference on Robotics and Automation (ICRA), pp. 3551–3557. IEEE (2009)

    Google Scholar 

  71. Yu, Y., Pradalier, C., Zong, G.: Appearance-based monocular visual odometry for ground vehicles. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 862–867. IEEE (2011)

    Google Scholar 

  72. Labrosse, F.: The visual compass: performance and limitations of an appearance-based method. J. Field Robot. 23(10), 913–941 (2006)

    Article  Google Scholar 

  73. Scaramuzza, D.: Omnidirectional Vision: from Calibration to Root Motion Estimation. Ph.D. thesis, ETH Zurich (2007)

    Google Scholar 

  74. Aqel, M.O., Marhaban, M.H., Saripan, M.I., Ismail, N.B.: Adaptive-search template matching technique based on vehicle acceleration for monocular visual odometry system. IEEJ Trans. Electr. Electron. Eng. 11(6), 739–752 (2016)

    Article  Google Scholar 

  75. Comport, A.I., Malis, E., Rives, P.: Accurate Quadrifocal Tracking for Robust 3D Visual Odometry. In: International Conference on Robotics and Automation (ICRA), pp. 40–45. Citeseer (2007)

    Google Scholar 

  76. Comport, A.I., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. Int. J. Robot. Res. 29(2–3), 245–266 (2010)

    Article  Google Scholar 

  77. Lovegrove, S., Davison, A.J., Ibanez-Guzmán, J.: Accurate visual odometry from a rear parking camera. In: Intelligent Vehicles Symposium (IV), pp. 788–793. IEEE (2011)

    Google Scholar 

  78. Tykkälä, T., Comport, A.I.: A dense structure model for image based stereo SLAM. In: International Conference on Robotics and Automation (ICRA), pp. 1758–1763. IEEE (2011)

    Google Scholar 

  79. Engel, J., Stückler, J., Cremers, D.: Large-scale direct SLAM with stereo cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1935–1942. IEEE (2015)

    Google Scholar 

  80. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 4 (2017)

    Google Scholar 

  81. Goecke, R., Asthana, A., Pettersson, N., Petersson, L.: Visual vehicle egomotion estimation using the fourier-mellin transform. In: Intelligent Vehicles Symposium, pp. 450–455. IEEE (2007)

    Google Scholar 

  82. Menegatti, E., Maeda, T., Ishiguro, H.: Image-based memory for robot navigation using properties of omnidirectional images. Robot. Auton. Syst. 47(4), 251–267 (2004)

    Article  Google Scholar 

  83. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. Vancouver, British Columbia (1981)

    Google Scholar 

  84. Zhou, C., Wei, Y., Tan, T.: Mobile robot self-localization based on global visual appearance features. In: International Conference on Robotics and Automation (ICRA), vol. 1, pp. 1271–1276. IEEE (2003)

    Google Scholar 

  85. Pajdla, T., Hlaváč, V.: Zero phase representation of panoramic images for image based localization. In: International Conference on Computer Analysis of Images and Patterns, pp. 550–557. Springer (1999)

    Google Scholar 

  86. Jogan, M., Leonardis, A.: Robust localization using the eigenspace of spinning-images, pp. 37–44. IEEE Computer Society (2000)

    Google Scholar 

  87. Gibson, J.J.: Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 49(3), 182–194 (1958)

    Article  Google Scholar 

  88. Adiv, G.: Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 4, 384–401 (1985)

    Article  Google Scholar 

  89. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  90. Kim, Y.H., Martínez, A.M., Kak, A.C.: Robust motion estimation under varying illumination. Image Vis. Comput. 23(4), 365–375 (2005)

    Article  Google Scholar 

  91. Gennert, M.A., Negahdaripour, S.: Relaxing the brightness constancy assumption in computing optical flow. Technical report. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1987)

    Google Scholar 

  92. Giachetti, A., Campani, M., Torre, V.: The use of optical flow for road navigation. IEEE Trans. Robot. Autom. 14(1), 34–48 (1998)

    Article  Google Scholar 

  93. Hanna, K.: Direct multi-resolution estimation of ego-motion and structure from motion. In: Workshop on Visual Motion, pp. 156–162. IEEE (1991)

    Google Scholar 

  94. Hyslop, A.M., Humbert, J.S.: Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow. J. Guid. Control Dyn. 33(1), 147–159 (2010)

    Article  Google Scholar 

  95. Campbell, J., Sukthankar, R., Nourbakhsh, I., Pahwa, A.: A robust visual odometry and precipice detection system using consumer-grade monocular vision. In: International Conference on Robotics and Automation (ICRA), pp. 3421–3427. IEEE (2005)

    Google Scholar 

  96. Grabe, V., Bülthoff, H.H., Giordano, P.R.: On-board velocity estimation and closed-loop control of a quadrotor uav based on optical flow. In: International Conference on Robotics and Automation (ICRA), pp. 491–497. IEEE (2012)

    Google Scholar 

  97. Grabe, V., Bülthoff, H.H., Giordano, P.R.: Robust optical-flow based self-motion estimation for a quadrotor uav. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2153–2159. IEEE (2012)

    Google Scholar 

  98. Dryanovski, I., Valenti, R.G., Xiao, J.: Fast visual odometry and mapping from RGB-D data. In: International Conference on Robotics and Automation (ICRA), pp. 2305–2310. IEEE (2013)

    Google Scholar 

  99. Li, S., Lee, D.: Fast visual odometry using intensity assisted iterative closest point. IEEE Robot. Autom. Lett. (RA-L) 1(2), 992–999 (2016)

    Article  Google Scholar 

  100. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: International Conference on Robotics and Automation (ICRA), pp. 3748–3754. IEEE (2013)

    Google Scholar 

  101. Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust real-time visual odometry for dense rgb-d mapping. In: International Conference on Robotics and Automation (ICRA), pp. 5724–5731. IEEE (2013)

    Google Scholar 

  102. Oliensis, J., Werman, M.: Structure from motion using points, lines, and intensities. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 599–606. IEEE (2000)

    Google Scholar 

  103. Morency, L.P., Gupta, R.: Robust real-time egomotion from stereo images. In: International Conference on Image Processing, pp. 719–722 (2003)

    Google Scholar 

  104. Scaramuzza, D., Fraundorfer, F., Pollefeys, M., Siegwart, R.: Closing the loop in appearance-guided structure-from-motion for omnidirectional cameras. In: Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras-OMNIVIS (2008)

    Google Scholar 

  105. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

    Google Scholar 

  106. Silva, H., Bernardino, A., Silva, E.: Probabilistic egomotion for stereo visual odometry. J. Intell. Robot. Syst. 77(2), 265–280 (2015)

    Article  Google Scholar 

  107. Silva, H., Bernardino, A., Silva, E.: A voting method for stereo egomotion estimation. Int. J. Adv. Robot. Syst. 14(3), 1729881417710795 (2017)

    Article  Google Scholar 

  108. Alismail, H., Kaess, M., Browning, B., Lucey, S.: Direct visual odometry in low light using binary descriptors. IEEE Robot. Autom. Lett. 2(2), 444–451 (2017)

    Article  Google Scholar 

  109. Pomerleau, D.A.: Alvinn: An autonomous land vehicle in a neural network. In: Adv. Neural Inf. Process. Systs. 305–313 (1989)

    Google Scholar 

  110. Roberts, R., Nguyen, H., Krishnamurthi, N., Balch, T.: Memory-based learning for visual odometry. In: International Conference on Robotics and Automation (ICRA), pp. 47–52. IEEE (2008)

    Google Scholar 

  111. Guizilini, V., Ramos, F.: Semi-parametric models for visual odometry. In: International Conference on Robotics and Automation (ICRA), pp. 3482–3489. IEEE (2012)

    Google Scholar 

  112. Konda, K., Memisevic, R.: Unsupervised learning of depth and motion (2013). arXiv:1312.3429

  113. Konda, K.R., Memisevic, R.: Learning visual odometry with a convolutional network. In: VISAPP (1), 486–490 (2015)

    Google Scholar 

  114. Mohanty, V., Agrawal, S., Datta, S., Ghosh, A., Sharma, V.D., Chakravarty, D.: DeepVO: a deep learning approach for monocular visual odometry (2016). arXiv:1611.06069

  115. Peretroukhin, V., Clement, L., Kelly, J.: Inferring sun direction to improve visual odometry: a deep learning approach. Int. J. Robot. Res. 0278364917749732 (2018)

    Google Scholar 

  116. Clement, L., Kelly, J.: How to train a cat: learning canonical appearance transformations for direct visual localization under illumination change. IEEE Robot. Autom. Lett. 3(3), 2447–2454 (2018)

    Article  Google Scholar 

  117. Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-camera dataset and simulator: event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 36(2), 142–149 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by DRDO—Aeronautical Research and Development Board through grant-in-aid project on “Design and development of Visual Odometry System”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poddar, S., Kottath, R., Karar, V. (2019). Motion Estimation Made Easy: Evolution and Trends in Visual Odometry. In: Hassaballah, M., Hosny, K. (eds) Recent Advances in Computer Vision. Studies in Computational Intelligence, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-030-03000-1_13

Download citation

Publish with us

Policies and ethics