Skip to main content

The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation

  • Chapter
  • First Online:
Vertex-Frequency Analysis of Graph Signals

Abstract

The spectral graph wavelet transform (SGWT) defines wavelet transforms appropriate for data defined on the vertices of a weighted graph. Weighted graphs provide an extremely flexible way to model the data domain for a large number of important applications (such as data defined on vertices of social networks, transportation networks, brain connectivity networks, point clouds, or irregularly sampled grids). The SGWT is based on the spectral decomposition of the \(N\times N\) graph Laplacian matrix \(\mathscr {L}\), where N is the number of vertices of the weighted graph. Its construction is specified by designing a real-valued function g which acts as a bandpass filter on the spectrum of \(\mathscr {L}\), and is analogous to the Fourier transform of the “mother wavelet” for the continuous wavelet transform. The wavelet operators at scale s are then specified by \(T_g^s = g(s\mathscr {L})\), and provide a mapping from the input data \(f\in \mathbb {R}^N\) to the wavelet coefficients at scale s. The individual wavelets \(\psi _{s,n}\) centered at vertex n, for scale s, are recovered by localizing these operators by applying them to a delta impulse, i.e. \(\psi _{s,n} = T_g^s \delta _n\). The wavelet scales may be discretized to give a graph wavelet transform producing a finite number of coefficients. In this work we also describe a fast algorithm, based on Chebyshev polynomial approximation, which allows computation of the SGWT without needing to compute the full set of eigenvalues and eigenvectors of \(\mathscr {L}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Grossmann, J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 723–736 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  4. Y. Meyer, Orthonormal wavelets, Wavelets. Inverse Problems and Theoretical Imaging (Springer, Berlin, 1989)

    Google Scholar 

  5. G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44(2), 141–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Sendur, I. Selesnick, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50, 2744–2756 (2002)

    Article  Google Scholar 

  9. J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Daubechies, G. Teschke, Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal. 19(1), 1–16 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Luisier, C. Vonesch, T. Blu, M. Unser, Fast interscale wavelet denoising of poisson-corrupted images. Signal Process. 90(2), 415–427 (2010)

    Article  MATH  Google Scholar 

  12. J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3462 (1993)

    Article  MATH  Google Scholar 

  13. A. Said, W. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  14. M. Hilton, Wavelet and wavelet packet compression of electrocardiograms. IEEE Trans. Biomed. Eng. 44, 394–402 (1997)

    Article  Google Scholar 

  15. R. Buccigrossi, E. Simoncelli, Image compression via joint statistical characterization in the wavelet domain. IEEE Trans. Image Process. 8, 1688–1701 (1999)

    Article  Google Scholar 

  16. D. Taubman, M. Marcellin, JPEG2000: Image Compression Fundamentals, Standards and Practice (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  Google Scholar 

  17. J.-L. Starck, A. Bijaoui, Filtering and deconvolution by the wavelet transform. Signal Process. 35(3), 195–211 (1994)

    Article  MATH  Google Scholar 

  18. D.L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2(2), 101–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Miller, A.S. Willsky, A multiscale approach to sensor fusion and the solution of linear inverse problems. Appl. Comput. Harmon. Anal. 2(2), 127–147 (1995)

    Article  MATH  Google Scholar 

  20. R. Nowak, E. Kolaczyk, A statistical multiscale framework for Poisson inverse problems. IEEE Trans. Inf. Theory 46, 1811–1825 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Trans. Image Process. 15, 937–951 (2006)

    Article  MathSciNet  Google Scholar 

  22. J.R. Wishart, Wavelet deconvolution in a periodic setting with long-range dependent errors. J. Stat. Plan. Inference 143(5), 867–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. F.K. Chung, Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92 (AMS Bookstore, Providence, 1997)

    Google Scholar 

  24. M. Crovella, E. Kolaczyk, Graph wavelets for spatial traffic analysis, in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, Jan 2003, vol. 3 (IEEE, 2003), pp. 1848–1857

    Google Scholar 

  25. A. Smalter, J. Huan, G. Lushington, Graph wavelet alignment kernels for drug virtual screening. J. Bioinform. Comput. Biol. 7, 473–497 (2009)

    Article  Google Scholar 

  26. M. Jansen, G.P. Nason, B.W. Silverman, Multiscale methods for data on graphs and irregular multidimensional situations. J. R. Stat. Soc. Ser. (Stat. Methodol.) 71(1), 97–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Murtagh, The Haar wavelet transform of a dendrogram. J. Classif. 24, 3–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.B. Lee, B. Nadler, L. Wasserman, Treelets - an adaptive multi-scale basis for sparse unordered data. Ann. Appl. Stat. 2, 435–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.R. Coifman, M. Maggioni, Diffusion wavelets. Appl. Comput. Harmon. Anal. 21, 53–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Maggioni, H. Mhaskar, Diffusion polynomial frames on metric measure spaces. Appl. Comput. Harmon. Anal. 24(3), 329–353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Geller, A. Mayeli, Continuous wavelets on compact manifolds. Mathematische Zeitschrift 262, 895–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Thanou, D.I. Shuman, P. Frossard, Learning parametric dictionaries for signals on graphs. IEEE Trans. Signal Process. 62, 3849–3862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. W.H. Kim, D. Pachauri, C. Hatt, M.K. Chung, S. Johnson, V. Singh, Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination, in Advances in Neural Information Processing Systems 25 ed. by F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Curran Associates Inc., 2012), pp. 1241–1249

    Google Scholar 

  35. W.H. Kim, M.K. Chung, V. Singh, Multi-resolution shape analysis via non-Euclidean wavelets: applications to mesh segmentation and surface alignment problems, in 2013 IEEE Conference on Computer Vision and Pattern Recognition, June 2013 (2013), pp. 2139–2146

    Google Scholar 

  36. N. Tremblay, P. Borgnat, Multiscale community mining in networks using spectral graph wavelets, in 21st European Signal Processing Conference (EUSIPCO 2013), Sept 2013 (2013), pp. 1–5

    Google Scholar 

  37. M. Zhong, H. Qin, Sparse approximation of 3d shapes via spectral graph wavelets. Visual Comput. 30, 751–761 (2014)

    Article  Google Scholar 

  38. M. Reed, B. Simon, Methods of Modern Mathematical Physics Volume 1: Functional Analysis (Academic Press, London, 1980)

    Google Scholar 

  39. I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  40. C.E. Heil, D.F. Walnut, Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Watkins, The Matrix Eigenvalue Problem - GR and Krylov Subspace Methods. Society for Industrial and Applied Mathematics (2007)

    Google Scholar 

  42. G.L.G. Sleijpen, H.A.V. der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. K.O. Geddes, Near-minimax polynomial approximation in an elliptical region. SIAM J. Numer. Anal. 15(6), 1225–1233 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Fraser, A survey of methods of computing minimax and near-minimax polynomial approximations for functions of a single independent variable. J. Assoc. Comput. Mach. 12, 295–314 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  45. G.M. Phillips, Interpolation and Approximation by Polynomials. CMS Books in Mathematics (Springer, Berlin, 2003)

    Google Scholar 

  46. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. Technical report, Pittsburgh, PA, USA, 1994

    Google Scholar 

  48. N. Leonardi, D.V.D. Ville, Tight wavelet frames on multislice graphs. IEEE Trans. Signal Process. 61, 3357–3367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.B. Tenenbaum, V.d. Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Google Scholar 

  50. P. Wessel, W.H.F. Smith, A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys. Res. 101(B4), 8741–8743 (1996)

    Article  Google Scholar 

  51. N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, D.K. Hammond, GSPBOX: a toolbox for signal processing on graphs, ArXiv e-prints (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammond, D.K., Vandergheynst, P., Gribonval, R. (2019). The Spectral Graph Wavelet Transform: Fundamental Theory and Fast Computation. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics