Skip to main content

Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research

  • Chapter
  • First Online:
Advances in Endophytic Fungal Research

Abstract

The marine environment is endowed with novel and rich sources of structural and functional metabolites that have prospective biomedical applications. Several marine plants, algae, and invertebrates are known to have a huge number of fungal endophytes. Until now, only a few marine-derived fungal endophytes have been identified as producers of bioactive secondary metabolites compared to the inhabitants of higher plants. These fungal endophytes were recently documented to produce a plethora of signature molecules for exploitation in industry, agriculture, and medicine. Endophytic fungi associated with marine hosts are acquiring increasing importance as promising sources of structural and biological natural products. This review presents knowledge on secondary metabolites isolated from algae in marine habitats, coral and sponge-associated endophytic fungi with a special emphasis on secondary metabolite production. The data presented in this review presents knowledge on secondary metabolites isolated from algae in marine habitats, coral and sponge-associated endophytic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 08 May 2019

    The original version of the book was inadvertently published with incorrect author name “Devanaboyina Venkataiah”. The author name has now been corrected to “Peddaboina Venkataiah”.

References

  • Almeida C, Kehraus S, Prudêncio M, König GM (2011) Marilones AC, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 7:1636–1642

    Article  CAS  Google Scholar 

  • Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7):483–495

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied microbiology and biotechnology, 90(6):1829–1845

    Google Scholar 

  • AUS, IVNN, WON, SUAP, & MUSHROOMS, E. (2007). Isolation of new secondary metabolites from spongeassociated and plant-derived endophytic fungi

    Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1

    Article  CAS  Google Scholar 

  • Bhimba BV, Franco DAD, Mathew JM, Jose GM, Joel EL, Thangaraj M (2012) Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med 10(1):77–80

    Article  Google Scholar 

  • Blunt JW et al (2008) Marine natural products. Nat Prod Rep 25:35–94

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30(2):237–323

    Article  CAS  Google Scholar 

  • Blunt J, Copp B, Keyzers R, Munro M, Prinsep M (2015) Marine natural products. Nat Prod Rep 32:116–211

    Article  CAS  Google Scholar 

  • Brader G et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  CAS  Google Scholar 

  • Bringmann G, Lang G, Gulder TAM, Hideyuki H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF, Perovi-Ottstadt S, Boreiko O, Müller WEG (2005) The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge derived Penicillium chrysogenum strain. Tetrahedron 61:7252–7265

    Article  CAS  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of micro-organisms review. Nat Prod Rep 21:143–163

    Article  CAS  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    Article  Google Scholar 

  • Cui CM, Li XM, Li CS, Proksch P, Wang BG (2010a) Cytoglobosins A−G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73(4):729–733

    Article  CAS  Google Scholar 

  • Cui CM, Li XM, Meng L, Li CS, Huang CG, Wang BG (2010b) 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J Nat Prod 73(11):1780–1784

    Article  CAS  Google Scholar 

  • Damare S, Singh P, Raghukumar S (2012) Biotechnology of marine fungi. Biology of marine fungi. Springer, Berlin, Heidelberg, pp 277–297

    Book  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563

    Article  CAS  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49(1):1

    Article  Google Scholar 

  • Donia MS et al (2011) Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem 12(8):1230–1236

    Article  CAS  Google Scholar 

  • Du FY, Li XM, Li CS, Shang Z, Wang BG (2012) Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg Med Chem Lett 22(14):4650–4653

    Article  CAS  Google Scholar 

  • Ebel R (2006) Secondary metabolites from marine derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Scientific Press, Norwich, pp 73–143

    Google Scholar 

  • Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8(8):2340–2368

    Article  CAS  Google Scholar 

  • Elsebai MF, Kehraus S, Gütschow M, Koenig GM (2010) Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived Fungus Phaeosphaeria spartinae. Nat Prod Commun 5(7):1071–1076

    CAS  PubMed  Google Scholar 

  • Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257

    Article  Google Scholar 

  • Gao SS, Li XM, Du FY, Li CS, Proksch P, Wang BG (2010) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 9(1):59–70

    Article  Google Scholar 

  • Gerwick W, Moore B (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289

    Article  Google Scholar 

  • Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11(4):176

    Article  Google Scholar 

  • Hertweck C (2009) Hidden biosynthetic treasures brought to light. Nat Chem Biol 5:450–452

    Article  CAS  Google Scholar 

  • Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Hans-Jürgen AUST, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104(11):1354–1365

    Article  Google Scholar 

  • Hulikere MM, Joshi CG, Ananda D, Poyya J, Nivya T (2016) Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus) isolated from seaweed (Sargassum wightii). Mycology 7(4):203–211

    Article  CAS  Google Scholar 

  • Kennedy J, Flemer B, Jackson S, Lejon D, Morrissey J, O’Gara F et al (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628

    Article  CAS  Google Scholar 

  • Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5(3):479

    Article  CAS  Google Scholar 

  • König J, Seithel A, Gradhand U, Fromm MF (2006a) Pharmacogenomics of human OATP transporters. Naunyn-Schmiedeberg’s archives of pharmacology, 372(6), 432–443

    Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006b) Natural products from marine organisms and their associated microbes. ChemBioChem 7(2):229–238

    Google Scholar 

  • Kralj A, Kehraus S, Krick A, Eguereva E, Kelter G, Maurer M et al (2006) Arugosins G and H: prenylated polyketides from the marine-derived fungus Emericellanidulans var. acristata. J Nat Prod 69(7):995–1000

    Article  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  Google Scholar 

  • Leal M, Puga J, Serôdio J, Gomes N, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades–where and what are we bioprospecting? PLoS One 7:e30580

    Article  CAS  Google Scholar 

  • Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA et al (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33(2):231–235

    Article  CAS  Google Scholar 

  • Li Y, Li X, Son BW (2005) Antibacterial and radical scavenging epoxycyclohexenones and aromatic polyols from a marine isolate of the fungus Aspergillus. Nat Prod Sci 11:136–138

    CAS  Google Scholar 

  • Li X, Li XM, Xu GM, Li CS, Wang BG (2014) Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem Lett 7:120–123

    Article  CAS  Google Scholar 

  • Li HL, Li XM, Li X, Wang CY, Liu H, Kassack MU, Meng LH, Wang BG (2017) Antioxidant Hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J Nat Prod 80(1):162–168

    Article  Google Scholar 

  • Liu X et al (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63(8):415

    Article  CAS  Google Scholar 

  • Lösgen S, Schlörke O, Meindl K, Herbst-Irmer R, Zeeck A (2007) Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur J Org Chem 2007(13):2191–2196

    Article  Google Scholar 

  • Maria GL, Sridhar KR, & Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural technology, 1, 67–80

    Google Scholar 

  • Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12(2):1043–1065

    Article  Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. https://doi.org/10.1371/journal.pone.0186234

    Article  CAS  Google Scholar 

  • Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer International Publishing, Switzerland, pp 1–35. https://doi.org/10.1007/978-3-319-34106-4_1

    Chapter  Google Scholar 

  • Montaser R, Luesch H (2011) Marine natural products: a wave of new drugs? Future Med Chem 3:1475–1489

    Article  CAS  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Frontiers in microbiology, 4:65

    Google Scholar 

  • Newton GGF, Abraham EP (1955) Cephalosporine C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548

    Article  CAS  Google Scholar 

  • Ohkawa Y, Miki K, Suzuki T, Nishio K, Sugita T, Kinoshita K, Takahashi K, Koyama K (2010) Antiangiogenic metabolites from a marine-derived fungus, Hypocrea vinosa. J Nat Prod 73(4):579–582

    Article  CAS  Google Scholar 

  • Osburne MS, Grossman TH, August PR, MacNeil IA (2000) Tapping into microbial diversity for natural products drug discovery. ASM News 66:411–417

    Google Scholar 

  • Pelaez F (2006) The historical delivery of antibiotics from microbial natural products—can history repeat?. Biochemical pharmacology, 71(7):981–990

    Google Scholar 

  • Pontius A, Krick A, Mesry R, Kehraus S, Foegen SE, Müller M, Klimo K, Gerhäuser C, König GM (2008) Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J Nat Prod 71(11):1793–1799

    Article  CAS  Google Scholar 

  • Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20:5677–5680

    Article  CAS  Google Scholar 

  • Reen F, Gutiérrez-Barranquero J, Dobson A, Adams C, O’Gara F (2015) Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 13:294–2954

    Google Scholar 

  • Rocha-Martin J, Harrington C, Dobson A, O’Gara F (2014) Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 12:3516–3559

    Article  Google Scholar 

  • Sarasan M, Puthumana J, Job N, Han J, Lee JS, Philip R (2017) Marine algicolous endophytic fungi—a promising drug resource of the era. J Microbiol Biotechnol 27:1039

    CAS  PubMed  Google Scholar 

  • Schulz B (2001) Bioactive fungal metabolites–impact and exploitation, 20. British Mycological Society. In: International symposium proceedings, University of Wales, Swansea, UK

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Draeger S, dela Cruz TE, Rheinheimer J, Siems K, Loesgen S et al (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51(3):219–234

    Article  CAS  Google Scholar 

  • Sogin M, Morrison H, Huber J, Mark Welch D, Huse S, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120

    Article  CAS  Google Scholar 

  • Tao L, Zhu F, Qin C, Zhang C, Chen S, Zhang P et al (2015) Clustered distribution of natural product leads of drugs in the chemical space as influenced by the privileged target-sites. Sci Rep 5:9325

    Article  CAS  Google Scholar 

  • Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi JI (2004) Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 6(18):3087–3089

    Article  CAS  Google Scholar 

  • Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd_Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. https://doi.org/10.3389/fphar.2018.00309

    Article  CAS  Google Scholar 

  • Wang GY (2006) Diversity and biotechnological potential of the sponge–associated microbial consortia. J Ind Microbiol Biotechnol 33(7):545–551

    Article  CAS  Google Scholar 

  • Wang F-W (2012) Bioactive metabolites from Guignardia sp., an endophytic fungus residing in Undaria pinnatifida. Chin J Nat Med 10(1):72–76

    Article  CAS  Google Scholar 

  • Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69(11):1622–1625

    Article  CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771

    Article  CAS  Google Scholar 

  • Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42(8):759–764

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges Krishna University for its encouragement and support.

Conflict of Interest We declare we don’t have any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bramhachari, P.V., Anju, S., Sheela, G.M., Komaraiah, T.R., Venkataiah, P., Prathyusha, A.M.V.N. (2019). Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research. In: Singh, B. (eds) Advances in Endophytic Fungal Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-03589-1_15

Download citation

Publish with us

Policies and ethics