Skip to main content

Exploring Abstract Argumentation-Based Approaches to Tackle Inconsistent Observations in Inductive Logic Programming

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11298))

Abstract

Noisy (uncertain, missing, or inconsistent) information, typical of many real-world domains, may dramatically affect the performance of logic-based Machine Learning. Multistrategy Learning approaches have been tried to solve this problem by coupling Inductive Logic Programming with other kinds of inference. While uncertainty has been tackled using probabilistic approaches, and abduction has been used to deal with missing data, inconsistency is still an open problem. In the Multistrategy Learning perspective, this paper proposes to attack this latter kind of noise using (abstract) Argumentation, an inferential strategy aimed at handling conflicting information. More specifically, it defines a pre-processing operator based on abstract argumentation that can detect and remove noisy atoms from the observations before running the learning system on the polished data. Quantitative and qualitative experiments point out some strengths and weaknesses of the proposed approach, and suggest lines for future research on this topic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An atom is an n-ary predicate applied to n terms as arguments, where a term is a constant, a variable, or an n-ary function applied to n terms as arguments.

References

  1. Ali, K.M., Pazzani, M.J.: HYDRA: a noise-tolerant relational concept learning algorithm. In: IJCAI, pp. 1064–1071 (1993)

    Google Scholar 

  2. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.: Handbook of Formal Argumentation, vol. 1. College Publications, Joplin (2018)

    MATH  Google Scholar 

  3. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 378–389. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655_33

    Chapter  Google Scholar 

  4. Ceri, S., Gottlöb, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-83952-8

    Book  Google Scholar 

  5. De Raedt, L., Lavrač, N.: Multiple predicate learning in two inductive logic programming settings. Log. J. IGPL 4(2), 227–254 (1996)

    Article  MathSciNet  Google Scholar 

  6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  7. Džeroski, S.: Handling imperfect data in inductive logic programming. In: Proceedings of the Fourth Scandinavian Conference on Artificial Intelligence–93, SCAI93, pp. 111–125 (1993)

    Google Scholar 

  8. Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: implementing argumentation frameworks using answer-set programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_67

    Chapter  MATH  Google Scholar 

  9. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ferilli, S.: Extending expressivity and flexibility of abductive logic programming. J. Intell. Inf. Syst. (2018). https://doi.org/10.1007/s10844-018-0531-6, ISSN: 1573-7675

    Article  Google Scholar 

  11. Gamberger, D., Lavrač, N., Džeroski, S.: Noise elimination in inductive concept learning: a case study in medical diagnosis. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS, vol. 1160, pp. 199–212. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61863-5_47

    Chapter  MATH  Google Scholar 

  12. Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of relations with linus. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 265–281. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017020

    Chapter  Google Scholar 

  13. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-83189-8

    Book  MATH  Google Scholar 

  14. McCreath, E., Sharma, A.: ILP with noise and fixed example size: a Bayesian approach. In: IJCAI, vol. 97, pp. 1310–1315 (1997)

    Google Scholar 

  15. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: New Generation Computing. Academic Press (1990)

    Google Scholar 

  16. Quinlan, J.R.: Learning logical definitions from relations. Mach.learn. 5(3), 239–266 (1990)

    Google Scholar 

  17. Rahwan, I., Simari, G.R., van Benthem, J.: Argumentation in Artificial Intelligence, vol. 47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0

    Book  Google Scholar 

  18. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Mach. Learn. 19(2), 95–131 (1995)

    Google Scholar 

  19. Rotella, F., Ferilli, S.: Probabilistic abductive logic programming using possible worlds. In: Proceedings of the 28th Italian Convention on Computational Logic (CILC-2013), Central Europe (CEUR) Workshop Proceedings, vol. 1068, pp. 131–145 (2013)

    Google Scholar 

  20. Rouveirol, C.: Extensions of inversion of resolution applied to theory completion. In: Inductive Logic Programming, pp. 64–90. Academic Press (1992)

    Google Scholar 

  21. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49674-2_16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pazienza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pazienza, A., Ferilli, S. (2018). Exploring Abstract Argumentation-Based Approaches to Tackle Inconsistent Observations in Inductive Logic Programming. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P. (eds) AI*IA 2018 – Advances in Artificial Intelligence. AI*IA 2018. Lecture Notes in Computer Science(), vol 11298. Springer, Cham. https://doi.org/10.1007/978-3-030-03840-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03840-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03839-7

  • Online ISBN: 978-3-030-03840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics