Skip to main content

Modeling the Respiratory Central Pattern Generator with Resonate-and-Fire Izhikevich-Neurons

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Abstract

Computational models of the respiratory central pattern generator (rCPG) are usually based on biologically-plausible Hodgkin Huxley neuron models. Such models require numerous parameters and thus are prone to overfitting. The HH approach is motivated by the assumption that the biophysical properties of neurons determine the network dynamics. Here, we implement the rCPG using simpler Izhikevich resonate-and-fire neurons. Our rCPG model generates a 3-phase respiratory motor pattern based on established connectivities and can reproduce previous experimental and theoretical observations. Further, we demonstrate the flexibility of the model by testing whether intrinsic bursting properties are necessary for rhythmogenesis. Our simulations demonstrate that replacing predicted mandatory bursting properties of pre-inspiratory neurons with spike adapting properties yields a model that generates comparable respiratory activity patterns. The latter supports our view that the importance of the exact modeling parameters of specific respiratory neurons is overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldman, J.L.: Neurophysiology of breathing in mammals. Handb. Physiol. Nerv. Syst. Am. Physiol. Soc. Sect. 1, 463–524 (1986)

    Google Scholar 

  2. Dutschmann, M., Paton, J.F.: Inhibitory synaptic mechanisms regulating upper airway patency. Respir. Physiol. Neurobiol. 131(1-2), 57–63 (2002)

    Article  Google Scholar 

  3. Dutschmann, M., Jones, S.E., Subramanian, H.H., Stanic, D., Bautista, T.G.: The physiological significance of postinspiration in respiratory control. In: Progress in brain research, vol. 212, pp. 113–130. Elsevier (2014)

    Google Scholar 

  4. Richter, D.W.: Generation and maintenance of the respiratory rhythm. J. Exp. Biol. 100(1), 93–107 (1982)

    Google Scholar 

  5. Richter, D.W., Spyer, K.M.: Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24(8), 464–472 (2001)

    Article  Google Scholar 

  6. Feldman, J.L., Del Negro, C.A.: Looking for inspiration: new perspectives on respiratory rhythm. Nature Rev. Neurosci. 7(3), 232 (2006)

    Article  Google Scholar 

  7. Rybak, I.A., Abdala, A.P., Markin, S.N., Paton, J.F., Smith, J.C.: Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog. Brain Res. 165, 201–220 (2007)

    Article  Google Scholar 

  8. Dutschmann, M., Dick, T.E.: Pontine mechanisms of respiratory control. Compr. Physiol. 2(4), 2443 (2012)

    Google Scholar 

  9. Smith, J.C., Abdala, A.P., Borgmann, A., Rybak, I.A., Paton, J.F.: Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36(3), 152–162 (2013)

    Article  Google Scholar 

  10. Anderson, T.M., Ramirez, J.M.: Respiratory rhythm generation: triple oscillator hypothesis. F1000Research 6, 139 (2017)

    Article  Google Scholar 

  11. Del Negro, C.A., Funk, G.D., Feldman, J.L.: Breathing matters. Nat. Rev. Neurosci. 19, 351–367 (2018)

    Article  Google Scholar 

  12. Butera Jr., R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397 (1999)

    Article  Google Scholar 

  13. Butera Jr., R.J., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J. Neurophysiol. 82(1), 398–415 (1999)

    Article  Google Scholar 

  14. Del Negro, C.A., Johnson, S.M., Butera, R.J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Botzinger complex. III. Experimental tests of model predictions. J. Neurophysiol. 86(1), 59–74 (2001)

    Article  Google Scholar 

  15. Ogilvie, M.D., Gottschalk, A., Anders, K., Richter, D.W., Pack, A.I.: A network model of respiratory rhythmogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 263(4), R962–R975 (1992)

    Article  Google Scholar 

  16. Smith, J.C., Abdala, A.P.L., Koizumi, H., Rybak, I.A., Paton, J.F.: Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J. Neurophysiol. 98(6), 3370–3387 (2007)

    Article  Google Scholar 

  17. Rybak, I.A., et al.: Modeling the ponto-medullary respiratory network. Respir. Physiol. Neurobiol. 143(2–3), 307–319 (2004)

    Article  Google Scholar 

  18. Molkov, Y.I., Bacak, B.J., Dick, T.E., Rybak, I.A.: Control of breathing by interacting pontine and pulmonary feedback loops. Front. Neural Circ. 7, 16 (2013)

    Google Scholar 

  19. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L.: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032), 726–729 (1991)

    Article  Google Scholar 

  20. Del Negro, C.A., Morgado-Valle, C., Feldman, J.L.: Respiratory rhythm: an emergent network property? Neuron 34(5), 821–830 (2002)

    Article  Google Scholar 

  21. Schulz, D.J., Goaillard, J.M., Marder, E.: Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9(3), 356 (2006)

    Article  Google Scholar 

  22. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  23. Jones, S.E., Dutschmann, M.: Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. J. Neurophysiol. 115(5), 2593–2607 (2016)

    Article  Google Scholar 

  24. Dhingra, R.R., Jacono, F.J., Fishman, M., Loparo, K.A., Rybak, I.A., Dick, T.E.: Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats. J. Appl. Physiol. 111(1), 272–284 (2011)

    Article  Google Scholar 

  25. Rubin, J.E., Shevtsova, N.A., Ermentrout, G.B., Smith, J.C., Rybak, I.A.: Multiple rhythmic states in a model of the respiratory central pattern generator. J. Neurophysiol. 101(4), 2146–2165 (2009)

    Article  Google Scholar 

  26. Dhingra, R.R., Dutschmann, M., Galán, R.F., Dick, T.E.: Kölliker-Fuse nuclei regulate respiratory rhythm variability via a gain-control mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312(2), R172–R188 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tolmachev .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 1, 2 and 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolmachev, P., Dhingra, R.R., Pauley, M., Dutschmann, M., Manton, J.H. (2018). Modeling the Respiratory Central Pattern Generator with Resonate-and-Fire Izhikevich-Neurons. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics