Skip to main content

Chebyshev Methods and Fast DCT Algorithms

  • Chapter
  • First Online:
Numerical Fourier Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter is concerned with Chebyshev methods and fast algorithms for the discrete cosine transform (DCT). Chebyshev methods are fundamental for the approximation and integration of real-valued functions defined on a compact interval. In Sect. 6.1, we introduce the Chebyshev polynomials of first kind and study their properties. Further, we consider the close connection between Chebyshev expansions and Fourier expansions of even 2π-periodic functions, the convergence of Chebyshev series, and the properties of Chebyshev coefficients. Section 6.2 addresses the efficient evaluation of polynomials, which are given in the orthogonal basis of Chebyshev polynomials. We present fast DCT algorithms in Sect. 6.3. These fast DCT algorithms are based either on the FFT or on the orthogonal factorization of the related cosine matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Baszenski, M. Tasche, Fast polynomial multiplication and convolution related to the discrete cosine transform. Linear Algebra Appl. 252, 1–25 (1997)

    Article  MathSciNet  Google Scholar 

  2. G. Baszenski, U. Schreiber, M. Tasche, Numerical stability of fast cosine transforms. Numer. Funct. Anal. Optim. 21(1–2), 25–46 (2000)

    Article  MathSciNet  Google Scholar 

  3. S. Belmehdi, On the associated orthogonal polynomials. J. Comput. Appl. Math. 32(3), 311–319 (1990)

    Article  MathSciNet  Google Scholar 

  4. J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  5. T. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach Science Publishers, New York, 1978)

    MATH  Google Scholar 

  6. C.W. Clenshaw, A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9, 118–120 (1955)

    MathSciNet  MATH  Google Scholar 

  7. C. Clenshaw, A. Curtis, A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  Google Scholar 

  8. A. Deaño, D. Huybrechs, A. Iserles, Computing Highly Oscillatory Integrals (SIAM, Philadelphia, 2018)

    MATH  Google Scholar 

  9. J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

    Article  MathSciNet  Google Scholar 

  10. J.R. Driscoll, D.M. Healy, D.N. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26(4), 1066–1099 (1997)

    Article  MathSciNet  Google Scholar 

  11. E. Feig, Fast scaled-dct algorithm, in Proceedings of SPIE 1244, Image Processing Algorithms and Techniques, vol. 2 (1990), pp. 2–13

    Google Scholar 

  12. E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40(9), 2174–2193 (1992)

    Article  Google Scholar 

  13. W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Oxford University Press, New York, 2004)

    MATH  Google Scholar 

  14. N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36(1), A148–A167 (2014)

    Article  MathSciNet  Google Scholar 

  15. R. Haverkamp, Approximationsfehler der Ableitungen von Interpolationspolynomen. J. Approx. Theory 30(3), 180–196 (1980)

    Article  MathSciNet  Google Scholar 

  16. R. Haverkamp, Zur Konvergenz der Ableitungen von Interpolationspolynomen. Computing 32(4), 343–355 (1984)

    Article  MathSciNet  Google Scholar 

  17. D.M. Healy, P.J. Kostelec, S. Moore, D.N. Rockmore, FFTs for the 2-sphere - improvements and variations. J. Fourier Anal. Appl. 9(4), 341–385 (2003)

    Article  MathSciNet  Google Scholar 

  18. A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)

    Article  MathSciNet  Google Scholar 

  19. P. Junghanns, R. Kaiser, Collocation for Cauchy singular integral equations. Linear Algebra Appl. 439(3), 729–770 (2013)

    Article  MathSciNet  Google Scholar 

  20. P. Junghanns, K. Rost, Matrix representations associated with collocation methods for Cauchy singular integral equations. Math. Methods Appl. Sci. 30, 1811–1821 (2007)

    Article  MathSciNet  Google Scholar 

  21. P. Junghanns, R. Kaiser, D. Potts, Collocation–quadrature methods and fast summation for Cauchy singular integral equations with fixed singularities. Linear Algebra Appl. 491, 187–238 (2016)

    Article  MathSciNet  Google Scholar 

  22. J. Keiner, Gegenbauer polynomials and semiseparable matrices. Electron. Trans. Numer. Anal. 30, 26–53 (2008)

    MathSciNet  MATH  Google Scholar 

  23. J. Keiner, Computing with expansions in Gegenbauer polynomials. SIAM J. Sci. Comput. 31(3), 2151–2171 (2009)

    Article  MathSciNet  Google Scholar 

  24. J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77(261), 397–419 (2008)

    Article  MathSciNet  Google Scholar 

  25. J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library. http://www.tu-chemnitz.de/~potts/nfft. Contributor: F. Bartel, M. Fenn, T. Görner, M. Kircheis, T. Knopp, M. Quellmalz, T. Volkmer, A. Vollrath

  26. H. Majidian, On the decay rate of Chebyshev coefficients. Appl. Numer. Math. 113, 44–53 (2017)

    Article  MathSciNet  Google Scholar 

  27. J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, Boca Raton, 2003)

    Google Scholar 

  28. S. Paszkowski, . Translated from Polish (Nauka, Moscow, 1983)

    Google Scholar 

  29. G. Plonka, M. Tasche, Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394, 309–345 (2005)

    Article  MathSciNet  Google Scholar 

  30. D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comput. 67(224), 1577–1590 (1998)

    Article  MathSciNet  Google Scholar 

  31. M. Püschel, J.M.F. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32(5), 1280–1316 (2003)

    Article  MathSciNet  Google Scholar 

  32. T.J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd edn. (Wiley, New York, 1990)

    Google Scholar 

  33. C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys. 46, 224–243 (1901)

    MATH  Google Scholar 

  34. H.E. Salzer, Lagrangian interpolation at the Chebyshev points X n,ν ≡cos(νπn), ν = 0(1)n; some unnoted advantages. Comput. J. 15, 156–159 (1972)

    Google Scholar 

  35. U. Schreiber, Numerische Stabilität von schnellen trigonometrischen Transformationen. Dissertation, Universität Rostock, 2000

    Google Scholar 

  36. G. Steidl, Fast radix-p discrete cosine transform. Appl. Algebra Eng. Commun. Comput. 3(1), 39–46 (1992)

    Article  MathSciNet  Google Scholar 

  37. G. Steidl, M. Tasche, A polynomial approach to fast algorithms for discrete Fourier–cosine and Fourier–sine transforms. Math. Comput. 56(193), 281–296 (1991)

    Article  MathSciNet  Google Scholar 

  38. F.J. Swetz, Mathematical Treasure: Collected Works of Chebyshev (MAA Press, Washington, 2016)

    Google Scholar 

  39. G. Szegö, Orthogonal Polynomials, 4th edn. (American Mathematical Society, Providence, 1975)

    MATH  Google Scholar 

  40. M. Tasche, H. Zeuner, Roundoff error analysis for fast trigonometric transforms, in Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, 2000), pp. 357–406

    MATH  Google Scholar 

  41. A. Townsend, M. Webb, S. Olver, Fast polynomial transforms based on Toeplitz and Hankel matrices. Math. Comput. 87(312), 1913–1934 (2018)

    Article  MathSciNet  Google Scholar 

  42. L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  Google Scholar 

  43. L.N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013)

    MATH  Google Scholar 

  44. Z.D. Wang, Fast algorithms for the discrete W transform and the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(4), 803–816 (1984)

    Article  MathSciNet  Google Scholar 

  45. Z.D. Wang, On computing the discrete Fourier and cosine transforms. IEEE Trans. Acoust. Speech Signal Process. 33(5), 1341–1344 (1985)

    Article  MathSciNet  Google Scholar 

  46. S. Xiang, X. Chen, H. Wang, Error bounds for approximation in Chebyshev points. Numer. Math. 116(3), 463–491 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plonka, G., Potts, D., Steidl, G., Tasche, M. (2018). Chebyshev Methods and Fast DCT Algorithms. In: Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04306-3_6

Download citation

Publish with us

Policies and ethics