Skip to main content

Towards a Symbolic Summation Theory for Unspecified Sequences

  • Chapter
  • First Online:
Book cover Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

The article addresses the problem whether indefinite double sums involving a generic sequence can be simplified in terms of indefinite single sums. Depending on the structure of the double sum, the proposed summation machinery may provide such a simplification without exceptions. If it fails, it may suggest a more advanced simplification introducing in addition a single nested sum where the summand has to satisfy a particular constraint. More precisely, an explicitly given parameterized telescoping equation must hold. Restricting to the case that the arising unspecified sequences are specialized to the class of indefinite nested sums defined over hypergeometric, multi-basic or mixed hypergeometric products, it can be shown that this constraint is not only sufficient but also necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Freely available with password request at http://www.risc.jku.at/research/combinat/software/Sigma/.

  2. 2.

    If a simpler expression exists, Sigma would find it with the same options as described in Remark 1.1.

  3. 3.

    \(\mathbb K\) is a field of characteristic 0.

  4. 4.

    The quotient ring of \(\mathbb K_X[k,\{X_k\}]\) subject to the equivalence relation \(\equiv \); this ring is a subring of \(\mathrm {Seq}(\mathbb K_X)\).

  5. 5.

    This means that \(q_d(k)\) is not equivalent to the 0-sequence \((\dots , 0,0,0,\dots )\in \mathbb K_X^\mathbb Z\).

  6. 6.

    Note that \(s(a)=0\) if \(a<0\).

  7. 7.

    By difference ring theory (see Lemma 4.13 below) the exponent with which F(k) can appear in G(k) is at most 2. As it turns out, exponent 1 suffices here to obtain a solution of the desired form.

  8. 8.

    Note that \(F(-1)=0\) by definition of a generic sum.

  9. 9.

    According to (17): \(G(-1)=0\).

  10. 10.

    By using the option RefinedForwardShift\(\rightarrow \)False, Sigma follows the calculation steps carried out above. Without this option a more complicated (but more efficient) strategy is used that produces a slight variation of the output.

  11. 11.

    Note that \({\text {const}}(\mathbb A,\sigma )\) in general is a subring of \(\mathbb A\).

  12. 12.

    Note that \(\mathbb K\subseteq \mathbb K_X\) and thus the evaluation of a sum has been defined already in (5).

  13. 13.

    In the theorem we require that the set of constants form a field. However, if \({\text {const}}(\mathbb A[s],\sigma )={\text {const}}(\mathbb A,\sigma )\), to prove the non-existence of a telescoping solution one does not need to assume that \({\text {const}}(\mathbb A,\sigma )\) is a field.

  14. 14.

    In Sigma the existence can be decided constructively by efficient telescoping algorithms [17, 20] provided that \((\mathbb A,\sigma )\) is a simple \(R\varPi \varSigma \)-ring; see Appendix 8.

  15. 15.

    Note that \(\mathbb K\subseteq \mathbb K_X\) and thus the evaluation of a sum has been defined already in (5).

  16. 16.

    Algorithmically, one starts with a base field K (like \(\mathbb Q\) or \(\mathbb Q(n)\)) and constructs —if necessary— a finite algebraic extension of it such that statement (1) is true.

  17. 17.

    This means that \(\tau (\sum _{i=0}^r f_i\,s^i)\equiv \sum _{i=0}^r\tau (f_i)\big (\big (\sum _{k=0}^n \bar{X}_k\big )^i\big )_{n\ge 0}\) for \(f_0,\dots ,f_r\in \mathbb A\).

  18. 18.

    In the q-case (resp. in the mixed case) we also have to replace z by \(q^k\) (resp. \(z_i\) by \(q_i^k\) for \(1\le i\le v\)).

References

  1. J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, Iterated elliptic and hypergeometric integrals for Feynman diagrams. J. Math. Phys. 59(062305), 1–55 (2018), arXiv:1706.01299 [hep-th]

    Article  MathSciNet  Google Scholar 

  2. J. Ablinger, C. Schneider, Algebraic independence of sequences generated by (cyclotomic) harmonic sums. Ann. Comb. 22(2), 213–244 (2018)

    Article  MathSciNet  Google Scholar 

  3. S.A. Abramov, On the summation of rational functions. Zh. Vychisl. Mat. Mat. Fiz. 11, 1071–1074 (1971)

    MathSciNet  MATH  Google Scholar 

  4. S.A. Abramov, Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)

    Article  MathSciNet  Google Scholar 

  5. G.E. Andrews and P. Paule. MacMahon’s partition analysis. IV. Hypergeometric multisums. Sém. Lothar. Combin. 42:Art. B42i, 24 (1999). The Andrews Festschrift (Maratea, 1998)

    Google Scholar 

  6. A. Bauer, M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symb. Comput. 28(4–5), 711–736 (1999)

    Article  MathSciNet  Google Scholar 

  7. R.W. Gosper, Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A. 75, 40–42 (1978)

    Article  MathSciNet  Google Scholar 

  8. M. Karr, Summation in finite terms. J. ACM 28, 305–350 (1981)

    Article  MathSciNet  Google Scholar 

  9. M. Karr, Theory of summation in finite terms. J. Symb. Comput. 1, 303–315 (1985)

    Article  MathSciNet  Google Scholar 

  10. M. Kauers, C. Schneider, in Application of Unspecified Sequences in Symbolic Summation, Proceedings of the ISSAC’06, ed. by J.G. Dumas (ACM Press, 2006), pp. 177–183

    Google Scholar 

  11. M. Kauers, C. Schneider, Indefinite summation with unspecified summands. Discret. Math. 306(17), 2021–2140 (2006)

    Article  MathSciNet  Google Scholar 

  12. E.D. Ocansey, C. Schneider, Representing (q-)hypergeometric products and mixed versions in difference rings, in Advances in Computer Algebra. WWCA 2016. Springer Proceedings in Mathematics and Statistics, vol. 226. ed. by C. Schneider, E. Zima (Springer, 2018), pp. 175–213, arXiv:1705.01368 [cs.SC]

  13. P. Paule, M. Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20(5–6) (1995)

    Article  MathSciNet  Google Scholar 

  14. M. Petkovšek, H.S. Wilf, D. Zeilberger, \(A=B\) (A K Peters, Wellesley, 1996)

    Google Scholar 

  15. C. Schneider, Simplifying sums in \(\varPi \varSigma \)-extensions. J. Algebra Appl. 6(3), 415–441 (2007)

    Article  MathSciNet  Google Scholar 

  16. C. Schneider, Symbolic summation assists combinatorics. Sem. Lothar. Combin. 56, Article B56b, 1–36 (2007)

    Google Scholar 

  17. C. Schneider, A refined difference field theory for symbolic summation. J. Symb. Comput. 43(9), 611–644 (2008), arXiv:0808.2543 [cs.SC]

    Article  MathSciNet  Google Scholar 

  18. C. Schneider, Structural theorems for symbolic summation. Appl. Algebra Eng. Commun. Comput. 21(1), 1–32 (2010)

    Article  MathSciNet  Google Scholar 

  19. C. Schneider, A streamlined difference ring theory: indefinite nested sums, the alternating sign and the parameterized telescoping problem, in Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2014 15t0h International Symposium, ed. by F. Winkler, V. Negru, T. Ida, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (IEEE Computer Society, 2014), pp. 26–33, arXiv:1412.2782v1 [cs.SC]

  20. C. Schneider, Fast algorithms for refined parameterized telescoping in difference fields, in Computer Algebra and Polynomials, Applications of Algebra and Number Theory. Lecture Notes in Computer Science (LNCS), vol. 8942, ed. by J. Gutierrez, J. Schicho, M. Weimann (Springer, Berlin, 2015), pp. 157–191, arXiv:1307.7887 [cs.SC]

    Google Scholar 

  21. C. Schneider, A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82–127 (2016), arXiv:1408.2776 [cs.SC]

    Article  MathSciNet  Google Scholar 

  22. C. Schneider, Summation theory II: characterizations of \(R\varPi \varSigma \)-extensions and algorithmic aspects. J. Symb. Comput. 80(3), 616–664 (2017), arXiv:1603.04285 [cs.SC]

  23. M. van der Put, M.F. Singer, Galois Theory of Difference Equations. Lecture Notes in Mathematics, vol. 1666 (Springer, Berlin, 1997)

    Google Scholar 

  24. D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities. Discret. Math. 80(2), 207–211 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Christian Krattenthaler for inspiring discussions. Special thanks go to Bill Chen and his collaborators at the Center of Applied Mathematics at the Tianjin University for overwhelming hospitality in the endspurt phase of writing up this paper. We are especially grateful for all the valuable and detailed suggestions of the referee that improved substantially the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paule, P., Schneider, C. (2019). Towards a Symbolic Summation Theory for Unspecified Sequences. In: Blümlein, J., Schneider, C., Paule, P. (eds) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04480-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04480-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04479-4

  • Online ISBN: 978-3-030-04480-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics