Skip to main content

Microphysical and Dielectric Properties of Hydrometeors

  • Chapter
  • First Online:
Radar Polarimetry for Weather Observations

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 1317 Accesses

Abstract

Microphysical properties of hydrometeors such as size, shape, orientation, and phase composition, and distribution of these properties over an ensemble of particles determine polarimetric radar variables. In this chapter, an overview of microphysical properties of different hydrometeor types is provided. Different forms of size distributions (SD) of raindrops and ice particles are discussed, and the statistics of the key parameters of SD such as liquid or ice water content, mean volume diameter, and normalized concentration are presented. The chapter contains basic information about density of atmospheric particles and their axis ratios and orientations. Special attention is given to dielectric properties of hydrometeors including basic formulas for dielectric constant of fresh water, solid ice, dry/wet snow, graupel, and hail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andsager, K., Beard, K., & Laird, N. (1999). Laboratory measurements of axis ratios for large drops. Journal of the Atmospheric Sciences, 56, 2673–2683.

    Article  Google Scholar 

  • Atlas, D., & Ulbrich, C. (2000). An observationally based conceptual model of warm oceanic convective rain in the tropics. Journal of Applied Meteorology, 39, 2165–2181.

    Article  Google Scholar 

  • Bang, W., & Lee, G.-W. (2017). Characteristics of DSD at two different climates and their implications into radar precipitation estimation. In Proceedings of 32nd International Union of Radio Science General Assembly and Scientific Symposium (p. 91).

    Google Scholar 

  • Beard, K., & Kubesh, R. (1991). Laboratory measurements of small raindrop distortion. Pt 2: Oscillation frequencies and modes. Journal of the Atmospheric Sciences, 48, 2245–2264.

    Article  Google Scholar 

  • Brandes, E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–685.

    Article  Google Scholar 

  • Brandes, E., Ikeda, K., Zhang, G., Schoenhuber, M., & Rasmussen, R. (2007). A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. Journal of Applied Meteorology, 46, 634–650.

    Article  Google Scholar 

  • Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar: Principles and applications. Cambridge, UK: Cambridge University Press 636pp.

    Book  Google Scholar 

  • Bringi, V., Huang, G.-J., Chandrasekar, V., & Gorgucci, E. (2002). A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. Journal of Atmospheric and Oceanic Technology, 19, 633–645.

    Article  Google Scholar 

  • Bringi, V., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences, 60, 354–365.

    Article  Google Scholar 

  • Bringi, V., Williams, C., Thurai, M., & May, P. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology, 26, 2107–2122.

    Article  Google Scholar 

  • Brown, P. R. A., & Francis, P. N. (1995). Improved measurements of ice water content in cirrus using a total-water probe. Journal of Atmospheric and Oceanic Technology, 12, 410–414.

    Article  Google Scholar 

  • Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., & Ikeda, K. (2008). Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. Journal of Applied Meteorology and Climatology, 47, 2238–2255.

    Article  Google Scholar 

  • Caylor, I. J., & Chandrasekar, V. (1996). Time-varying crystal orientation in thunderstorms observed with multiparameter radar. IEEE Transactions on Geoscience and Remote Sensing, 34, 847–858.

    Article  Google Scholar 

  • Chandrasekar, V., Cooper, W., & Bringi, V. (1988). Axis ratios and oscillations of raindrops. Journal of the Atmospheric Sciences, 45, 1323–1333.

    Article  Google Scholar 

  • Cheng, L., & English, M. (1983). A relationship between hailstone concentration and size. Journal of the Atmospheric Sciences, 40, 204–213.

    Article  Google Scholar 

  • Cheng, L., English, M., & Wong, R. (1985). Hailstone size distributions and their relationship to storm thermodynamics. Journal of Climate and Applied Meteorology, 24, 1059–1067.

    Article  Google Scholar 

  • Delanoe, J., Protat, A., Testud, J., Bouniol, D., Heymsfiled, A., Bansemer, A., et al. (2005). Statistical properties of the normalized ice particles size distribution. Journal of Geophysical Research, 110, D10201.

    Article  Google Scholar 

  • Delanoe, J., Heymsfield, A., Protat, A., Bansemer, A., & Hogan, R. (2014). Normalized particle size distribution for remote sensing applications. Journal of Geophysical Research – Atmospheres, 119, 4202–4227.

    Article  Google Scholar 

  • Fabry, F., & Szyrmer, W. (1999). Modeling the melting layer. Part II: Electromagnetic. Journal of the Atmospheric Sciences, 56, 3593–3600.

    Article  Google Scholar 

  • Farley, R. (1987). Numerical modeling of hailstorms and hailstone growth. Pt II. The role of low-density riming growth in hail production. Journal of Climate and Applied Meteorology, 26, 234–254.

    Article  Google Scholar 

  • Garrett, T., Yuter, S., Fallgatter, C., Shkurko, K., Rhodes, S., & Endries, J. (2015). Orientations and aspect ratios of falling snow. Geophysical Research Letters, 42. https://doi.org/10.1002/2015GL064040.

  • Hendry, A., & McCormick, G. C. (1976). Radar observations of alignment of precipitation particles by electrostatic fields in thunderstorms. Journal of Geophysical Research, 81, 5353–5357.

    Article  Google Scholar 

  • Hendry, A., McCormick, G., & Barge, B. (1976). The degree of common orientations of hydrometeors observed by polarization diversity radars. Journal of Applied Meteorology, 15, 633–640.

    Article  Google Scholar 

  • Hendry, A., Antar, Y., & McCormick, G. (1987). On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Science, 22, 37–50.

    Article  Google Scholar 

  • Heymsfield, A., & Wright, R. (2014). Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? Journal of the Atmospheric Sciences, 71, 3392–3403.

    Article  Google Scholar 

  • Heymsfield, A., Kramer, M., Wood, N., Gettleman, A., Field, P., & Liu, G. (2017). Dependence of ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations. Journal of Applied Meteorology and Climatology, 56, 189–215.

    Article  Google Scholar 

  • Hu, Z., & Srivastava, R. (1995). Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. Journal of the Atmospheric Sciences, 52, 1761–1783.

    Article  Google Scholar 

  • Huang, G., Bringi, V., & Thurai, M. (2008). Orientation angle distributions of drops after 80 m fall using a 2D-video disdrometer. Journal of Atmospheric and Oceanic Technology, 25, 1717–1723.

    Article  Google Scholar 

  • Illingworth, A., & Blackman, T. (2002). The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. Journal of Applied Meteorology, 41, 286–297.

    Article  Google Scholar 

  • Jung, Y., Zhang, G., & Xue, M. (2008). Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Monthly Weather Review, 136, 2228–2245.

    Article  Google Scholar 

  • Jung, Y., Xue, M., & Zhang, G. (2010). Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysical scheme. Journal of Applied Meteorology and Climatology, 49, 146–163.

    Article  Google Scholar 

  • Khain, A., & Pinsky, M. (2018). Physical processes in clouds and cloud modeling. Cambridge, UK: Cambridge University Press. 626 pp.

    Book  Google Scholar 

  • Knight, C., & Knight, N. (1970). The falling behavior of hailstones. Journal of the Atmospheric Sciences, 27, 672–680.

    Article  Google Scholar 

  • Knight, C., Schlatter, P., & Schlatter, T. (2008). An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Monthly Weather Review, 136, 2833–2848.

    Article  Google Scholar 

  • Korolev, A., & Isaac, G. (2003). Roundness and aspect ratio of particles in ice clouds. Journal of the Atmospheric Sciences, 60, 1795–1808.

    Article  Google Scholar 

  • Krehbiel, P. R., Chen, T., McCrary, S., Rison, W., Gray, G., & Brook, M. (1996). The use of dual-channel circular-polarization radar observations for remotely sensing storm electrification. Meteorology and Atmospheric Physics, 59, 65–82.

    Article  Google Scholar 

  • Kry, P., & List, R. (1974). Angular motions of freely falling spheroidal hailstone models. Physics of Fluids, 17, 1093–1102.

    Article  Google Scholar 

  • Lee, G., Zawadzki, I., Szyrmer, W., Sempere-Torres, D., & Uijlenhoet, R. (2004). A general approach to double-moment normalization of drop-size distributions. Journal of Applied Meteorology, 43, 264–281.

    Article  Google Scholar 

  • Leinonen, J., & Szyrmer, W. (2015). Radar signatures of snowflake riming: A modeling study. Earth and Space Science, 2, 346–358.

    Article  Google Scholar 

  • Liao, L., & Meneghini, R. (2005). On modeling air/spaceborne radar returns in the melting layer. IEEE Transactions on Geoscience and Remote Sensing, 43, 2799–2809.

    Article  Google Scholar 

  • Macklin, W. (1962). The density and structure of ice formed by accretion. Quarterly Journal of the Royal Meteorological Society, 88, 30–50.

    Article  Google Scholar 

  • Marshall, J. S., & Palmer, W. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165–166.

    Article  Google Scholar 

  • Matson, R. J., & Huggins, A. W. (1980). The direct measurement of the sizes, shapes, and kinematics of falling hailstones. Journal of the Atmospheric Sciences, 37, 1107–1125.

    Article  Google Scholar 

  • Matrosov, S., Reinking, R., Kropfli, R., & Bartram, B. (1996). Estimation of ice hydrometeor types and shapes from radar polarization measurements. Journal of Atmospheric and Oceanic Technology, 13, 85–96.

    Article  Google Scholar 

  • Matrosov, S. (1997). Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. Journal of Applied Meteorology, 36, 633–648.

    Article  Google Scholar 

  • Matrosov, S., Reinking, R., & Djalalova, I. (2005). Inferring fall attitudes of pristine dendritic crystals from polarimetic radar data. Journal of the Atmospheric Sciences, 62, 241–250.

    Article  Google Scholar 

  • Matrosov, S. (2008). Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Transactions on Geoscience and Remote Sensing, 46, 1039–1047.

    Article  Google Scholar 

  • Maxwell Garnett, J. C. (1904). Color in metal glasses and in metallic films. Philosophical Transactions of the Royal Society London A, 203, 385–420.

    Article  Google Scholar 

  • Melnikov, V., & Straka, J. (2013). Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. Journal of Atmospheric and Oceanic Technology, 30, 1691–1703.

    Article  Google Scholar 

  • Meneghini, R., & Liao, L. (1996). Comparisons of cross sections of melting hydrometeors as derived from dielectric mixing formulas and a numerical method. Journal of Applied Meteorology, 35, 1658–1670.

    Article  Google Scholar 

  • Metcalf, J. I. (1997). Temporal and spatial variations of hydrometeor orientation of hydrometeors in thunderstorms. Journal of Applied Meteorology, 36, 315–321.

    Article  Google Scholar 

  • Moisseev, D., Lautaportti, S., Tyynela, J., & Lim, S. (2015). Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. Journal of Geophysical Research – Atmospheres, 120, 12644–12655.

    Article  Google Scholar 

  • Moisseev, D., von Lerber, A., & Tiira, J. (2017). Quantifying the effect of riming on snowfall using ground-based observations. Journal of Geophysical Research – Atmospheres, 122, 4019–4037.

    Article  Google Scholar 

  • Ortega, K., Krause, J., & Ryzhkov, A. (2016). Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. Journal of Applied Meteorology and Climatology, 55, 829–848.

    Article  Google Scholar 

  • Phillips, V., Pokrovsky, A., & Khain, A. (2007). The influence of time-depending melting on the dynamics and precipitation production in maritime and continental storm clouds. Journal of the Atmospheric Sciences, 64, 338–359.

    Article  Google Scholar 

  • Pruppacher, H., & Pitter, R. (1971). A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28, 86–94.

    Article  Google Scholar 

  • Pruppacher, H., & Klett, J. (1997). Microphysics of clouds and precipitation (Vol. 954). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Rasmussen, R. M., Levizzani, V., & Pruppacher, H. R. (1984). A wind tunnel study on the melting behavior of atmospheric ice particles. III: Experiment and theory for spherical ice particles of radius >500 μm. Journal of the Atmospheric Sciences, 41, 381–388.

    Article  Google Scholar 

  • Ryan, B. (1996). On the global variation of precipitating layer clouds. Bulletin of the American Meteorological Society, 77, 53–70.

    Article  Google Scholar 

  • Ryzhkov, A. V., Zrnic, D. S., Hubbert, J. C., Bringi, V. N., Vivekanandan, J., & Brandes, E. A. (2002). Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. Journal of Atmospheric and Oceanic Technology, 19, 340–354.

    Article  Google Scholar 

  • Ryzhkov, A., & Zrnic, D. (2007). Depolarization in ice crystals and its effect on radar polarimetric measurements. Journal of Atmospheric and Oceanic Technology, 24, 1256–1267.

    Article  Google Scholar 

  • Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.

    Article  Google Scholar 

  • Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.

    Article  Google Scholar 

  • Schuur, T. J., Ryzhkov, A. V., & Clabo, D. R. (2005). Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Preprints, 32nd Conference on Radar Meteorology. CD-ROM, 15R.4.

    Google Scholar 

  • Smith, P., Musil, D., Weber, S., Spahn, J., Johnson, G., & Sand, W. (1976). Raindrop and hailstone distributions inside storms. In Preprints, International Conference on Cloud Physics (pp. 252–257). Boulder, CO: American Meteor Society.

    Google Scholar 

  • Spahn, J., & Smith, P. (1976). Some characteristics of hailstone size distributions inside hailstorms. In Preprints, 17th Conference on Radar Meteorology (pp. 187–191). Seattle, WA: American Meteorological Society.

    Google Scholar 

  • Straka, J. M., Zrnic, D. S., & Ryzhkov, A. V. (2000). Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. Journal of Applied Meteorology, 39, 1341–1372.

    Article  Google Scholar 

  • Szyrmer, W., & Zawadzki, I. (2010). Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. Journal of the Atmospheric Sciences, 67, 3319–3335.

    Article  Google Scholar 

  • Testud, J., Oury, S., Black, R., Amayenc, P., & Dou, X. (2001). The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. Journal of Applied Meteorology, 40, 1118–1140.

    Article  Google Scholar 

  • Thompson, E., Rutledge, S., Dolan, B., & Thurai, M. (2015). Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. Journal of the Atmospheric Sciences, 72, 4091–4125.

    Article  Google Scholar 

  • Thurai, M., Gatlin, P., Bringi, V., Petersen, W., Kennedy, P., Notaros, B., et al. (2017). Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. Journal of Applied Meteorology and Climatology, 56, 877–896.

    Article  Google Scholar 

  • Tiira, J., Moisseev, D., Lerber, A., Ori, D., Tokay, A., Bliven, L., et al. (2016). Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmospheric Measurement Techniques, 9, 4825–4841.

    Article  Google Scholar 

  • Ulbrich, C. (1983). Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22, 1764–1775.

    Article  Google Scholar 

  • Ulbrich, C., & Atlas, D. (1982). Hail parameter relations: A comprehensive digest. Journal of Applied Meteorology, 21, 22–43.

    Article  Google Scholar 

  • Wen, L., Zhao, K., Zhang, G., Xue, M., Zhou, B., Liu, S., et al. (2016). Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. Journal of Geophysical Research – Atmospheres, 121, 2265–2282.

    Article  Google Scholar 

  • Woods, C., Stoelinga, T., & Locatelli, D. (2008). Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. Journal of the Atmospheric Sciences, 65, 189–205.

    Article  Google Scholar 

  • Zawadzki, I., & De Agostinho Antonio, M. (1988). Equilibrium raindrop size distributions in tropical rain. Journal of the Atmospheric Sciences, 45, 3452–3459.

    Article  Google Scholar 

  • Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.

    Article  Google Scholar 

  • Zhang, G., Vivekanandan, J., & Brandes, E. (2001). A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 830–840.

    Article  Google Scholar 

  • Zrnic, D., & Ryzhkov, A. (2004). Polarimetric properties of chaff. Journal of Atmospheric and Oceanic Technology, 21, 1017–1024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryzhkov, A.V., Zrnic, D.S. (2019). Microphysical and Dielectric Properties of Hydrometeors. In: Radar Polarimetry for Weather Observations. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-05093-1_4

Download citation

Publish with us

Policies and ethics