Skip to main content

Secret Sharing Schemes on Compartmental Access Structure in Presence of Cheaters

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11281))

Abstract

Various adversarial scenarios have been considered in secret sharing for threshold access structure. However, threshold access structure can not provide efficient solution when participants are classified in different compartments. Of many access structures for which ideal secret sharing schemes can be realized, compartmental access structure is an important one. This paper is targeted to initiate the study of secret sharing schemes for compartmental access structure secure against malicious adversary. This paper presents definitions of cheating detectable, cheater identifiable and robust secret sharing schemes in compartmental access structure and their realization through five different constructions in the information-theoretic setting. Moreover in case of cheater identification and robustness, proposed protocols are secure against rushing adversary who are allowed to submit (possibly forged) shares after observing shares of the honest participants in the reconstruction phase.

J. Pramanik—Research is supported by Council of Scientific & Industrial Research (CSIR), India (Grant no. 09/028(961)2015-EMR-1).

S. Dutta—Research is supported by National Institute of Information and Communications Technology (NICT), Japan under the NICT International Invitation Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adhikari, A., Morozov, K., Obana, S., Roy, P.S., Sakurai, K., Xu, R.: Efficient threshold secret sharing schemes secure against rushing cheaters. IACR Cryptology ePrint Archive 2015, 23 (2015)

    Google Scholar 

  2. Adhikari, A., Morozov, K., Obana, S., Roy, P.S., Sakurai, K., Xu, R.: Efficient threshold secret sharing schemes secure against rushing cheaters. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 3–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2_1

    Chapter  Google Scholar 

  3. Araki, T.: Efficient \((k, n)\) threshold secret sharing schemes secure against cheating from \( n-1 \) cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_11

    Chapter  Google Scholar 

  4. Araki, T., Ogata, W.: A simple and efficient secret sharing scheme secure against cheating. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 94(6), 1338–1345 (2011)

    Article  Google Scholar 

  5. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_45

    Chapter  Google Scholar 

  6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_13

    Chapter  Google Scholar 

  7. Choudhury, A.: Brief announcement: optimal amortized secret sharing with cheater identification. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 101–102. ACM (2012)

    Google Scholar 

  8. Cramer, R., Damgård, I., Fehr, S.: On the cost of reconstructing a secret, or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_30

    Chapter  Google Scholar 

  9. Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/multi-sender network security: efficient authenticated multicast/feedback. In: Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 1992, pp. 2045–2054. IEEE (1992)

    Google Scholar 

  10. Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25(3), 434–463 (2012)

    Article  MathSciNet  Google Scholar 

  11. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and compartmented groups. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 367–378. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053748

    Chapter  MATH  Google Scholar 

  12. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater identifiable \((k, n)\) threshold secret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_33

    Chapter  Google Scholar 

  13. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  14. Obana, S., Tsuchida, K.: Cheating detectable secret sharing schemes supporting an arbitrary finite field. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 88–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_7

    Chapter  Google Scholar 

  15. Ogata, W., Araki, T.: Cheating detectable secret sharing schemes for random bit strings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 96(11), 2230–2234 (2013)

    Article  Google Scholar 

  16. Ogata, W., Eguchi, H.: Cheating detectable threshold scheme against most powerful cheaters for long secrets. Des. Codes Cryptogr. 71(3), 527–539 (2014)

    Article  MathSciNet  Google Scholar 

  17. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure against cheating. SIAM J. Discret. Math. 20(1), 79–95 (2006)

    Article  MathSciNet  Google Scholar 

  18. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)

    Google Scholar 

  19. Roy, P.S., Adhikari, A., Xu, R., Morozov, K., Sakurai, K.: An efficient robust secret sharing scheme with optimal cheater resiliency. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_4

    Chapter  Google Scholar 

  20. Roy, P.S., Adhikari, A., Xu, R., Morozov, K., Sakurai, K.: An efficient t-cheater identifiable secret sharing scheme with optimal cheater resiliency. IACR Cryptology ePrint Archive 2014, 628 (2014)

    Google Scholar 

  21. Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication codes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 527–541. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054151

    Chapter  Google Scholar 

  22. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_30

    Chapter  Google Scholar 

  23. Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. J. Cryptol. 22(2), 227–258 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wang, X., Fu, F.W., Guang, X.: Probabilistic secret sharing schemes for multipartite access structures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 99(4), 856–862 (2016)

    Article  Google Scholar 

  25. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Mu, Y., Liu, J.: Further ideal multipartite access structures from integer polymatroids. Sci. China Inf. Sci. 58(7), 1–13 (2015)

    MathSciNet  Google Scholar 

  26. Xu, R., Morozov, K., Takagi, T.: Cheater identifiable secret sharing schemes via multi-receiver authentication. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 72–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09843-2_6

    Chapter  Google Scholar 

  27. Yu, Y., Wang, M.: A probabilistic secret sharing scheme for a compartmented access structure. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 136–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanik, J., Roy, P.S., Dutta, S., Adhikari, A., Sakurai, K. (2018). Secret Sharing Schemes on Compartmental Access Structure in Presence of Cheaters. In: Ganapathy, V., Jaeger, T., Shyamasundar, R. (eds) Information Systems Security. ICISS 2018. Lecture Notes in Computer Science(), vol 11281. Springer, Cham. https://doi.org/10.1007/978-3-030-05171-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05171-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05170-9

  • Online ISBN: 978-3-030-05171-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics