Skip to main content

Emerging Thermal Issues in Geotechnical Engineering

  • Chapter
  • First Online:
Geotechnical Fundamentals for Addressing New World Challenges

Abstract

Application of changes in temperature to soils and rocks may lead to a wide range of flow processes and physical phenomena. This chapter focuses on the fundamental aspects of coupled heat transfer and water flow in saturated and unsaturated soils and rocks, thermal pressurization of pore fluids, thermal volume change, thermal softening of the preconsolidation stress, thermal hydro-shearing, and desiccation cracking. Established applications are also presented, including energy piles, barriers for radioactive waste repositories, and thermal energy storage. Emerging research areas including the role of thermal processes in climate change and elevated temperature landfills are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A.: Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Eng. Geol. 89, 144–154 (2007)

    Google Scholar 

  2. Abuel-Naga, H.M., Bergado, D.T., Bouazza, A., Pender, M.: Thermomechanical model for saturated clays. Géotechnique 59(3), 273–278 (2009)

    Google Scholar 

  3. Acuña, J., Fossa, M., Monzó, P., Palm, B.: Numerically generated g-functions for ground coupled heat pump applications. Proceedings of the COMSOL Conference, Milan, pp. 1–6 (2012)

    Google Scholar 

  4. Adam, D., Markiewicz, R.: Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3), 229–236 (2009)

    Google Scholar 

  5. AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J.: Recognize anthropogenic drought. Nature 524(7566), 409–4011 (2015)

    Google Scholar 

  6. Akrouch, G., Sánchez, M., Briaud, J.-L.: Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech. 9, 399–412 (2014)

    Google Scholar 

  7. Akrouch, G., Sánchez, M., Briaud, J.L.: An analytical and experimental study on the thermal efficiency of energy piles in unsaturated soils. Comput. Geotech. 7, 207–220 (2014)

    Google Scholar 

  8. Alonso, E.E., Gens, A., Josa, A.: A constitutive model for partially saturated soils. Géotechnique 40(3), 405–430 (1990)

    Google Scholar 

  9. Alsherif, N.A., McCartney, J.S.: Nonisothermal behavior of compacted silt at low degrees of saturation. Géotechnique 65(9), 703–716 (2015)

    Google Scholar 

  10. Alsherif, N., McCartney, J.S.: Yielding of silt at high temperature and suction magnitudes. Geotech. Geol. Eng. 34(2), 501–514 (2016)

    Google Scholar 

  11. Amatya, B.L., Soga, K., Bourne-Webb, P.J., Amis, T., Laloui, L.: Thermo-mechanical behaviour of energy piles. Géotechnique 62(6), 503–519 (2012)

    Google Scholar 

  12. Armstrong, J.E., Frind, E.O., McClellan, R.D.: Nonequilibrium mass transfer between the vapor, aqueous, and soil-phases in unsaturated soils during vapor extraction. Water Resour. Res. 30, 355–368 (1994)

    Google Scholar 

  13. Aversa, S., Evangelista, A.: Thermal expansion of Neapolitan yellow tuff. Rock Mech. Rock Eng. 26(4), 281–306 (1993)

    Google Scholar 

  14. Baladi, J.Y., Ayers, D.L., Schoenhals, R.J.: Transient heat and mass transfer in soils. Int. J. Heat Mass Transf. 24(3), 449–458 (1981)

    MATH  Google Scholar 

  15. Baldi, G., Hueckel, T., Peano, A., Pellegrini, R.: Developments in modelling of thermo-hydro-geomechanical behavior of boom clay and clay-based buffer materials. Commission of the European Communities, Nuclear Science and Technology, EUR 13365/1 and EUR 13365/2 (1991)

    Google Scholar 

  16. Baldi, G., Hueckel, T., Pelegrini, R.: Thermal volume changes of the mineral-water system in low-porosity clay soils. Can. Geotech. J. 25, 807–825 (1988)

    Google Scholar 

  17. Başer, T., Linkowski, D., McCartney, J.S.: Charging and discharging of soil-borehole thermal energy storage systems in the vadose zone. Proceedings of the 7th International Congress on Environmental Geotechnics: ICEG 2014. Bouazza, A., Yuen, S.T.S., Brown, B. eds. Nov. 10–14. Melbourne. Engineers Australia, pp. 362–369 (2014)

    Google Scholar 

  18. Başer, T., Lu, N., McCartney, J.S.: Operational response of a soil-borehole thermal energy storage system. J. Geotech. Geoenviron. Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0001432, 04015097 (2016a)

  19. Başer, T., Traore, T., McCartney, J.S.: Physical modeling of coupled heat transfer and water flow in soil-borehole thermal energy storage systems in the vadose zone. In: Geothermal Energy: An Emerging Resource. C.B. Dowling, L.J. Florea, and K. Neumann, eds. GSA Books. Boulder, CO. Special Paper 519, pp. 81–93 (2016b)

    Google Scholar 

  20. Başer, T., Dong, Y., Lu, N., McCartney, J.S.: Role of considering non-constant soil thermal parameters in the simulation of geothermal heat storage systems in the vadose zone. Proceedings of ISSMGE 8th AYGEC, Astana, Kazakhstan, pp. 1–6 (2016c)

    Google Scholar 

  21. Başer, T., Dong, Y., McCartney, J.S.: Heat content in soil-borehole thermal energy systems in the vadose zone. In: Proceedings of the ICEGT 2016, Kiel, Germany, pp. 1–10 (2016d)

    Google Scholar 

  22. Baser, T., McCartney, J.S., Dong, Y., Lu, N.: Evaluation of coupled thermal and hydraulic relationships used in simulation of thermally-induced water flow in unsaturated soils. PanAm UNSAT 2017. Dallas, TX. Nov. 12–15. 10 p (2017)

    Google Scholar 

  23. Başer, T., Dong, Y., Moradi, A.M., Lu, N., Smits, K., Ge, S., Tartakovsky, D., McCartney, J.S.: Role of water vapor diffusion and nonequilibrium phase change in geothermal energy storage systems in the vadose zone. J. Geotech. Geoenviron. Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0001910 (2018)

  24. Batini, N., Rotta Loria, A.F., Conti, P., Laloui, L.: Energy and geotechnical behaviour of energy piles for different design solutions. Appl. Thermal Eng. 86, 199–213 (2015)

    Google Scholar 

  25. Beier, R.A., Acuña, J., Mogensen, P., Palm, B.: Transient heat transfer in a coaxial borehole heat exchanger. Geothermics 51, 470–482 (2014)

    Google Scholar 

  26. Bénet, J.C., Jouanna, P.: Phenomenological relation of phase change of water in a porous-medium-experimental verification and measurement of the phenomenological coefficient. Int. J. Heat Mass Transf. 25, 1747–1754 (1982)

    Google Scholar 

  27. Bénet, J.C., Lozano, A.L., Cherblanc, F., Cousin, B.: Phase change of water in a hygroscopic porous medium: Phenomenological relation and experimental analysis for water in soil. J. Non-Equilib. Thermodyn. 34, 133–153 (2009)

    MATH  Google Scholar 

  28. Bergenstahl, L., Gabrielsson, A., Mulabdic, M.: Changes in soft clay caused by increases in temperature, pp. 1637–1640. XIII ICSMFE. New Delhi, India (1994)

    Google Scholar 

  29. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    MATH  Google Scholar 

  30. Bittelli, M., Ventura, F., Campbell, G.S., Snyder, R.L., Gallegati, F., Pisa, P.R.: Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J. Hydrol. 362, 191–205 (2008)

    Google Scholar 

  31. Bixler, N.E. NORIA: A Finite Element Computer Program for Analyzing Water, Vapor, Air and Energy Transport in Porous Media. SAND84-2057, Sandia National Laboratories, Albuquerque, NM (1985)

    Google Scholar 

  32. Booker, J.R., Savvidou, C.: Consolidation around a spherical heat source. Int. J. Solids Struct. 20(11/12), 1079–1090 (1984)

    Google Scholar 

  33. Booker, J.R., Savvidou, C.: Consolidation around a point heat source. Int. J. Numer. Anal. Meth. Geomech. 9(2), 173–184 (1985)

    Google Scholar 

  34. Bouazza, A., Singh, R.M., Wang, B., Barry-Macaulay, D., Haberfield, C., Chapman, G., Baycan, S., Carden, Y.: Harnessing on site renewable energy through pile foundations. Aust. Geomech. J. 46(4), 79–90 (2011)

    Google Scholar 

  35. Boudali, M., Leroueil, S., Srinivasa Murthy, B.R.: Viscous behavior of natural clays. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India (1994)

    Google Scholar 

  36. Bourne-Webb, P., Amatya, B., Soga, K., Amis, T., Davidson, C., Payne, P.: Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3), 237–248 (2009)

    Google Scholar 

  37. Brandl, H.: Energy foundations and other thermo-active ground structures. Géotechnique 56(2), 81–122 (2006)

    Google Scholar 

  38. Brandon, T.L., Mitchell, J.K.: Factors influencing thermal resistivity of sands. J. Geotech. Environ. Eng. 115(12), 1683–1698 (1989)

    Google Scholar 

  39. Brandon, T.L., Mitchell, J.K., Cameron, J.T.: Thermal instability in buried cable backfills. J. Geotech. Eng. 115(1), 38–55 (1989)

    Google Scholar 

  40. Britto, A.M., Savvidou, C., Maddocks, D.V., Gunn, M.J., Booker, J.R.: Numerical and centrifuge modelling of coupled heat flow and consolidation around hot cylinders buried in clay. Géotechnique 39(1), 13–25 (1989)

    Google Scholar 

  41. Brooks, B.A., Bawden, G. Manjunath, D., Werner, C. Knowles, N., Foster, J., Dudas, J., Cayan, D.R.: Contemporaneous subsidence and levee overtopping potential, Sacramento-San Joaquin Delta. San Francisco Estuary Watershed Sci. 10(1) (2012)

    Google Scholar 

  42. Burghignoli, A., Desideri, A., Miliziano, S.: A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 37, 764–780 (2000)

    Google Scholar 

  43. Committee on Adaptation to a Changing Climate (CACC).: Adapting Infrastructure and Civil Engineering Practice to a Changing Climate, ASCE, Reston, VA (2015)

    Google Scholar 

  44. Cahill, A.T., Parlange, M.B.: On water vapor transport in field soils. Water Resour. Res. 34, 731–739 (1998)

    Google Scholar 

  45. Calder, G.V., Stark, T.D.: Aluminum reactions and problems in municipal solid waste landfills. J. Hazard. Toxic Radioact. Waste 15(1), 1–8 (2010)

    Google Scholar 

  46. Campanella, R.G., Mitchell, J.K.: Influence of temperature variations on soil behavior. ASCE J. Soil Mech. Found. Div. 94(SM3), 709–734 (1968)

    Google Scholar 

  47. Campbell, G.S.: Soil Physics with BASIC. Elsevier, New York (1985)

    Google Scholar 

  48. Campbell, G.S., Jungbauer, J.D., Bidlake, W.R., Hungerford, R.D.: Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 158, 307–313 (1994)

    Google Scholar 

  49. Cass, A., Campbell, G.S., Jones, T.L.: Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. 48(1), 25–32 (1984)

    Google Scholar 

  50. Cary, J.W., Taylor, S.A.: Thermally driven liquid and vapor phase transfer of water and energy in soil. Soil Sci. Soc. Am. Proc. 26, 417–420 (1962)

    Google Scholar 

  51. Cary, J.W.: Water flux in moist soil: Thermal versus suction gradients. Soil Sci. 100(3), 168–175 (1965)

    Google Scholar 

  52. Catolico, N., Ge, S., McCartney, J.S.: Numerical modeling of a soil-borehole thermal energy storage system. Vadose Zone Journal. 15(1), 1–17 (2016). https://doi.org/10.2136/vzj2015.05.0078

    Article  Google Scholar 

  53. Cekerevac, C., Laloui, L.: Experimental study of thermal effects on the mechanical behavior of a clay. Int. J. Numer. Anal. Meth. Geomech. 28, 209–228 (2004)

    Google Scholar 

  54. Chammari, A., Naon, B., Cherblanc, F., Cousin, B., Bénet, J.C.: Interpreting the drying kinetics of a soil using a macroscopic thermodynamic nonequilibrium of water between the liquid and vapor phase. Drying Technol. 26, 836–843 (2008)

    Google Scholar 

  55. Chabora, E.R., Benson, S.M.: Brine displacement and leakage detection using pressure measurements in aquifers overlying CO2 storage reservoirs. Energy Procedia 1, 2405–2412 (2009)

    Google Scholar 

  56. Chapuis, S., Bernier, M.: Seasonal storage of solar energy in borehole heat exchangers. In: Proceedings of the IBPSA Conference on Building Simulations, Glasgow, Scotland, pp. 599–606 (2009)

    Google Scholar 

  57. Chen, D., McCartney, J.S.: Parameters for load transfer analysis of energy piles in uniform nonplastic soils. ASCE Int. J. Geomech. 17(7), 04016159 (2017)

    Google Scholar 

  58. Cheng, L., Phillips, T.J., AghaKouchak, A.: Non-stationary return levels of CMIP5 multi-model temperature extremes. Clim. Dyn. 44(11–12), 2947–2963 (2015)

    Google Scholar 

  59. Cherblanc, F., Lozano, A.L., Ouedraogo, F., Bénet, J.C.: Non-equilibrium liquid–gas phase change in hygroscopic porous media. In: European Drying Conference, Biarritz, France. 1–2 (2007)

    Google Scholar 

  60. Ciriello, V., Bottarelli, M., Di Federico, V., Tartakovsky, D.M.: Temperature fields induced by geothermal devices. Energy 93(2), 1896–1903 (2015)

    Google Scholar 

  61. Claesson, J. and Hellström, G.: Model studies of duct storage systems. In: Millhone, J.P., Willis, E.H. (eds.) New energy conservation technologies and their commercialization. Springer, Berlin, pp. 762–778 (1981)

    Google Scholar 

  62. Cleall, P.J., Seetharam, S.C., Thomas, H.R.: Inclusion of some aspects of chemical behavior of unsaturated soil in thermo/hydro/chemical/mechanical models. I: model development. ASCE J. Eng. Mech. 133(3):338–347 (2007)

    Google Scholar 

  63. Cleall, P.J., Singh, R.M., Thomas, H.R.: Non-isothermal moisture movement in unsaturated kaolin: An experimental and theoretical investigation. Geotech. Test. J. 34(5), 1–11 (2011)

    Google Scholar 

  64. Coe, J.A., Godt, J.W.: Review of approaches for assessing the impact of climate change on landslide hazards. In: Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, Canada, pp. 371–377 (2012)

    Google Scholar 

  65. Coccia, C.J.R., McCartney, J.S.: A thermo-hydro-mechanical true triaxial cell for evaluation of the impact of anisotropy on thermally-induced volume changes in soils. ASTM Geotech. Test. J. 35(2), 227–237 (2012)

    Google Scholar 

  66. Coccia, C.J.R., McCartney, J.S.: Impact of heat exchange on the thermo-hydro-mechanical response of reinforced embankments. Proceedings of Geo Congress 2013. ASCE. San Diego, CA. Mar. 3–5. pp. 343-352 (2013)

    Google Scholar 

  67. Coccia, C.J., Gupta, R., Morris, J., McCartney, J.S.: Municipal solid waste landfills as geothermal heat resources. Renew. Sustain. Energy Rev. 19, 463–474 (2013)

    Google Scholar 

  68. Coccia, C.J.R., McCartney, J.S.: Thermal volume change of poorly draining soils I: Critical assessment of volume change mechanisms. Comput. Geotech. 80(Dec.), 26–40 (2016a)

    Google Scholar 

  69. Coccia, C.J.R., McCartney, J.S.: Thermal volume change of poorly draining soils II: Constitutive modelling. Comput. Geotech. 80(Dec.), 16–25 (2016b)

    Google Scholar 

  70. Coccia, C.J.R., McCartney, J.S.: High-pressure thermal triaxial cell for evaluation of the impact of temperature on soil volume change mechanisms. ASTM Geotech. Test. J. 1–18. https://doi.org/10.1520/gtj20150114 (2016c)

  71. Côté, J., Konrad, J.-M.: A generalized thermal conductivity model for soils and construction materials. Can. Geotech. J. 42, 443–458 (2005)

    Google Scholar 

  72. Conant, R., Ryan, M., Agren, G., Birge, H., Davidson, E., Eliasson, P., Evans, S., Frey, S., Giardina, C., Hopkins, F., Hyvonen, R., Kirschbaum, M., Lavallee, J., Leifeld, J., Parton, W., Steinweg, M., Wallenstein, M., Martin, W., Bradford, M.: Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Global Chang. Biology. 17, 3392–3404 (2011)

    Google Scholar 

  73. Claesson, J., Hellström, G.: Model studies of duct storage systems. In: Millhone, J.P., Willis, E.H. (eds.) New Energy Conservation Technologies and their Commercialization. Springer, Berlin, pp. 763–779 (1982)

    Google Scholar 

  74. Cui, Y.J., Sultan, N., Delage, P.: A thermomechanical model for clays. Can. Geotech. J. 37(3), 607–620 (2000)

    Google Scholar 

  75. Cui, Y.-J., Le, T.-T., Tang, A.-M., Delage, P., Li, X.-L.: Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading. Géotechnique. 59(4), 319–329 (2009)

    Google Scholar 

  76. Damberg, L., AghaKouchak, A.: Global trends and patterns of drought from space. Theoret. Appl. Climatol. 117(3–4), 441–448 (2014)

    Google Scholar 

  77. Delage, P., Sultan, N., Cui, Y.J.: On the thermal consolidation of Boom clay. Can. Geotech. J. 37, 343–354 (2000)

    Google Scholar 

  78. Del Olmo, C., Fioravante, V., Gera, F., Hueckel, T., Mayor, J.C., Pellegrini, R.: Thermomechanical properties of deep argillaceous formations. Eng. Geol. 41, 87–101 (1996)

    Google Scholar 

  79. de Vries, D.A.: Simultaneous transfer of heat and moisture in porous media. Eos Trans. Am. Geophys. Union. 39, 909–916 (1958)

    Google Scholar 

  80. Dong, Y., McCartney, J.S., Lu, N.: Critical review of thermal conductivity models for unsaturated soils. Geotech. Geol. Eng. 33(2), 207–221 (2015)

    Google Scholar 

  81. Ebigbo, A.: Thermal effects of carbon dioxide sequestration in the subsurface. Doctoral dissertation, Institut für Wasserbau, Universität Stuttgart, Germany (2005)

    Google Scholar 

  82. El-Fadel, M., Findikakis, A.N., Leckie, J.O.: Numerical modelling of generation and transport of gas and heat in sanitary landfills: II model application. Waste Manage. Res. 14, 537–551 (1996)

    Google Scholar 

  83. Eriksson, L.G.: Temperature effects on consolidation properties of sulphide clays. In: Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, 4 p (1989)

    Google Scholar 

  84. Eskilson, P. Thermal Analysis of Heat Extraction Boreholes. Dept. of Mathematical Physics, Lund Univ. Lund, Sweden (1987)

    Google Scholar 

  85. Ettala, M., Rahkonen, P., Rossi, E., Mangs, J., Keski-Rahkonen, O.: Landfill fires in Finland. Waste Manage. Res. 14, 377–384 (1996)

    Google Scholar 

  86. Ewen, J.: Thermal instability in gently heated unsaturated sand. Int. J. Heat Mass Transf. 31(8), 1707–1710 (1988)

    Google Scholar 

  87. Ewen, J., Thomas, H.R.: Heating unsaturated medium sand. Géotechnique 39(3), 455–470 (1989)

    Google Scholar 

  88. Farouki, O.T.: Thermal Properties of Soils. Cold Reg. Sci. Eng. CRREL, Monogr. 81–1, 136 (1981)

    Google Scholar 

  89. Farr, T. G., Jones, C., Liu, Z. Progress Report: Subsidence in the Central Valley, California, prepared for California Department of Water Resources (DWR), by researchers at NASA’s Jet Propulsion Laboratory, Pasadena, California, Aug. 2015 (2015)

    Google Scholar 

  90. Gariano, S.L., Guzzetti, F.: Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016)

    Google Scholar 

  91. Gao, J., Zhang, X., Liu, J., Li, K., Yang, J.: Numerical and experimental assessment of thermal performance of vertical energy piles: an application. Appl. Energy 85(10), 901–910 (2008)

    Google Scholar 

  92. Gehlin, S.: Thermal Response Test: Method Development and Evaluation. Ph.D. Thesis. Lulea University of Technology (2002)

    Google Scholar 

  93. Gens A.: The role of geotechnical engineering for nuclear energy utilisation. In: Proceedings of the XIII European Conference of Soil Mechanics and Geotechnical Engineering, vol. 3, Prague, pp. 25–67 (2003)

    Google Scholar 

  94. Gens, A.: Soil-environment interactions in geotechnical engineering. Géotechnique 60(1), 3–74 (2010)

    Google Scholar 

  95. Gens, A., Sánchez, M., Sheng, D.: On constitutive modelling of unsaturated soils. Acta Geotech. 1(3), 137–147 (2006)

    Google Scholar 

  96. Gens, A., Sánchez, M.Do.N, Guimaraes, O., Alonso, E.E., Lloret, A., Olivella, S., Villar, M.V., Huertas, F.: A full-scale in situ heating test for high-level nuclear waste disposal: Observations, analysis and interpretation. Géotechnique 59(4), 377–399 (2009)

    Google Scholar 

  97. Gens, A., Vallejan, B., Sánchez, M., Imbert, C., Villar, M.V., Van Geet, M.: Hydromechanical behavior of a heterogeneous compacted soil: experimental observations and modeling. Géotechnique 61(5), 367–386 (2011)

    Google Scholar 

  98. Ghaaowd, I., Takai, A., Katsumi, T., McCartney, J.S.: Pore water pressure prediction for undrained heating of soils. Environ. Geotech. 4(2), 70–78 (2016)

    Google Scholar 

  99. Ghabezloo, S., Sulem, J.: Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech. Rock Eng. J. 42, 1–24 (2009)

    Google Scholar 

  100. Goode, J.C., III, McCartney, J.S.: Centrifuge modeling of boundary restraint effects in energy foundations. J. Geotech. Geoenviron. Eng. 141(8), 04015034-1–04015034-13. https://doi.org/10.1061/(asce)gt.1943-5606.0001333 (2015)

  101. Graham, J., Tanaka, N., Crilly, T., Alfaro, M.: Modified cam-clay modelling of temperature effects in clays. Can. Geotech. J. 38(3), 608–621 (2001)

    Google Scholar 

  102. Grant, S., Salehzadeh, A.: Calculations of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. W. Res. Res. 32, 261–279 (1996)

    Google Scholar 

  103. Guimarães, L., Gens, A., Olivella, S.: Coupled thermo-hydro-mechanical and chemical analysis of expansive clay subjected to heating and hydration. Transp. Porous Media 66(3), 341–372 (2007)

    Google Scholar 

  104. Guimarães, L., Gens, A., Sánchez, M., Olivella, S.: A chemo-mechanical constitutive model accounting for cation exchange in expansive clays. Géotechnique 63(3), 221–234 (2013)

    Google Scholar 

  105. Gupta, S., Helmig, R., Wohlmuth, B.: Non-isothermal, multi-phase, multicomponent flows through deformable methane hydrate reservoirs. Comput. Geosci. http://dx.doi.org/10.1007/s10596-015-9520-9 (2015)

  106. Gurr, C.G., Marshall, T.J., Hutton, J.T.: Movement of water in soil due to a temperature gradient. Soil Sci. 74(5), 335–345 (1952)

    Google Scholar 

  107. Hamada, Y., Saitoh, H., Nakamura, M., Kubota, H., Ochifuji, K.: Field performance of an energy pile system for space heating. Energy Build. 39(5), 517–524 (2007)

    Google Scholar 

  108. Hendron, D.M., Fernandez G., Prommer P.J., Giroud J.P., Orozco L.F.: Investigation of the cause of the 27 September 1997 slope failure at the Doña Juana landfill. In: Proceedings of the Sardinia ‘99—7th International waste management landfill symposium, Cagliari, Italy (1999)

    Google Scholar 

  109. Hillel, D.: Fundamental of Soil Physics. Academic, San Diego, CA (1980)

    Google Scholar 

  110. Ho, C.K., Webb, S.W.: Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data—Does enhanced vapor-phase diffusion exist? J. Porous Media 1, 71–92 (1998)

    MATH  Google Scholar 

  111. Houston, S.L., Houston, W.N., Williams, N.D.: Thermo-mechanical behavior of seafloor sediments. J. Geotech. Eng. ASCE. 111(12), 1249–1263 (1985)

    Google Scholar 

  112. Hu, L.B., Péron, H., Hueckel, T., Laloui, L.: Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model. Int. J. Numer. Anal. Meth. Geomech. 37, 1761–1781 (2013)

    Google Scholar 

  113. Hu, M.M., Hueckel,: Environmentally enhanced crack propagation in a chemically degrading isotropic shale. Geotechnique. 63(4), 313–321. (2013)

    Google Scholar 

  114. Hueckel, T., Borsetto, M., Peano, A.: Thermoelastoplastic-hydraulic response of clays subjected to nuclear waste heat. In: Lewis, R.W., Hinton, E., Bettess, P., Schrefler, B.A. (eds.)Numerical Methods in Transient and Coupled Problems, pp. 213–235 (1987)

    Google Scholar 

  115. Hueckel, T., Baldi, M.: Thermoplasticity of saturated clays: experimental constitutive study. J. Geotech. Eng. 116(12), 1778–1796 (1990)

    Google Scholar 

  116. Hueckel, T., Borsetto, M.: Thermoplasticity of saturated soils and shales: constitutive equations. J. Geotech. Eng. 116(12), 1765–1777 (1990)

    Google Scholar 

  117. Hueckel, T., Peano, A.: Some geotechnical aspects of radioactive waste isolation in continental clays. Comput. Geotech. 3, 157–182 (1987)

    Google Scholar 

  118. Hueckel, T., Pellegrini, R., Del Omo, C.: A constitutive study of thermo-elasto-plasticity of deep carbonatic clays. Int. J. Numer. Anal. Meth. Geomech. 22(7), 549–574 (1998)

    MATH  Google Scholar 

  119. Hueckel, T., Pellegrini, R.: Thermoplastic modeling of undrained failure of saturated clay due to heating. Soils Found. 31(3), 1–16 (1991)

    Google Scholar 

  120. Hueckel, T., Pellegrini, R.: Effective stress and water pressure in saturated clays during heating-cooling cycles. Can. Geotech. J. 29(6), 1095–1102 (1992)

    Google Scholar 

  121. Hueckel, T., Francois, B., Laloui, L.: Explaining thermal failure in saturated clays. Géotechnique 59(3), 197–212 (2009)

    Google Scholar 

  122. Hueckel, T., EL Mielniczuk, B., Youssoufi, M.S., Hu, L.B., Laloui, L.: A three-scale cracking criterion for drying soils. Acta Geotech. 62(5), 1049–1059 (2014)

    Google Scholar 

  123. Hueckel, T., Peano, A., Pellegrini, R.: A constitutive law for thermo-plastic behavior of rocks: an analogy with clays. Surv. Geophys. 15(5), 643–671 (1994)

    Google Scholar 

  124. Ingersoll, L.R., Plass, H.J.: Theory of the ground pipe heat source for the heat pump. Heating, Piping Air Conditioning. 20(7), 119–122 (1948)

    Google Scholar 

  125. Ingersoll, L.R., Zobel, O.J., Ingersoll, A.C.: Heat Conduction with Engineering, Geological, and Other Applications. University of Wisconsin Press. Rev. Ed., p. 325 (1954)

    Google Scholar 

  126. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 (2013)

    Google Scholar 

  127. Jafari, N.H., Stark, T.D., Merry, S.M.: The 10 July 2000 Payatas landfill slope failure. Int. J. Geoeng. Case Hist. 2(3), 208–228 (2013)

    Google Scholar 

  128. Jafari, N.H., Stark, T.D., Roper, R.: Classification and reactivity of aluminum production waste. J. Hazard. Toxic Radioact. Waste 18(4), 1–11 (2014)

    Google Scholar 

  129. Jafari, N., Stark, T.D., Rowe, K.: Service life of HDPE geomembranes subjected to elevated temperatures. J. Hazard. Toxic Radioact. Waste 18(1), 16–26 (2014)

    Google Scholar 

  130. Jafari, N.H. Elevated Temperatures in Waste Containment Systems. Ph.D. Dissertation, University of Illinois at Urbana-Champaign (2015)

    Google Scholar 

  131. Jafari, N.H., Stark, T.D., Thalhamer, T.: Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills. Waste Manag. 59, 286–301 (2017)

    Google Scholar 

  132. Jafari, N.H., Stark, T.D., Thalhamer, T.: Progression of elevated temperatures in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 143(8). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001683 (2017b)

  133. Jasim, F. H., Vahedifard, F., Ragno, E., AghaKouchak, A., Ellithy, G.: Effects of climate change on fragility curves of earthen levees subjected to extreme precipitations. In: Proceedings of the Geo-Risk 2017 Geotechnical Risk Assessment and Management, GSP, vol. 285, pp. 498–507 (2017)

    Google Scholar 

  134. Johansen, O.: Thermal Conductivity of Soils. Ph.D. Thesis, University of Trondheim (1975)

    Google Scholar 

  135. Kavanaugh, S.P.: A design method for hybrid ground-source heat pumps. ASHRAE Transac. 104(2), 691–698. (1975) (1998)

    Google Scholar 

  136. Khalili, N., Khabbaz, M.H.: A unique relationship for c for the determination of the shear strength of unsaturated soils. Géotechnique 48(5), 681–687 (1998)

    Google Scholar 

  137. Khalili, N., Geiser, F., Blight, G.E.: Effective stress in unsaturated soils, a review with new evidence. Int. J. Geomech. 4(2), 115–126 (2004)

    Google Scholar 

  138. Knellwolf, C., Peron, H., Laloui, L.: Geotechnical analyses of heat exchanger piles. J. Geotech. Geoenviron. Eng. 137(10), 890–902 (2011)

    Google Scholar 

  139. Laloui, L.: Thermo-mechanical behavior of soils. RFGC (French Revue of Civil Engineering). 5, 809–843 (2001)

    Google Scholar 

  140. Laloui, L., Cekerevac, C.: Thermo-plasticity of clays: an isotropic yield mechanism. Comput. Geotech. 30(8), 649–660 (2003)

    Google Scholar 

  141. Laloui, L., Nuth, M., Vulliet, L.: Experimental and numerical investigations of the behavior of a heat exchanger pile. Int. J. Numer. Anal. Meth. Geomech. 30, 763–781 (2006)

    Google Scholar 

  142. Laloui, L., Cekerevac, C.: Non-isothermal plasticity model for cyclic behavior of soils. Int. J. Numer. Anal. Meth. Geomech. 32, 437–460 (2008)

    MATH  Google Scholar 

  143. Laloui, L., Francois, B.: ACMEG-T: A soil thermo-plasticity model. J. Eng. Mech. 135(9), 932–944 (2009)

    Google Scholar 

  144. Laloui, L., Moderassi, H.: Non-isothermal plasticity model for cyclic behavior of soils. Int. J. Numer. Anal. Meth. Geomech. 32(5), 437–460 (1997)

    Google Scholar 

  145. Lamarche, L., Beauchamp, B.: A new contribution to the finite line-source model for geothermal boreholes. Energy Build. 39(2), 188–198 (2007)

    MATH  Google Scholar 

  146. Lide, D.R.: Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL (2001)

    Google Scholar 

  147. Likos, W.J.: Modeling thermal conductivity dryout curves from soil-water characteristic curves”. J. Geotech. Geoenviron. Eng. 140(5), 04013056 (2014a)

    Google Scholar 

  148. Likos, W.J.: Pore-scale model for thermal conductivity of unsaturated sand. J. Geotech. Geoenviron. Eng. 1–14 (2014b)

    Google Scholar 

  149. Likos, W.J., Lu, N.: Filter paper column for measuring transient suction profiles in expansive clay. Transp. Res. Rec. 1821, 83–89 (2003)

    Google Scholar 

  150. Lu, N. Generalized soil water retention equation for adsorption and capillarity. J. Geotech. Geoenviron. Eng.. 04016051-1-15 (2016)

    Google Scholar 

  151. Lu, N., Likos, W.J.: Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng. 132(2), 131–142 (2006)

    Google Scholar 

  152. Lu, N., Godt, J.W., Wu, D.T.: A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 46(5), W05515 (2010)

    Google Scholar 

  153. Lu, N., Dong, Y.: A closed form equation for thermal conductivity of unsaturated soils at room temperature. J. Geotech. Geoenviron. Eng. 141(6), 04015016 (2015)

    Google Scholar 

  154. Lu, S., Ren, T., Gong, Y., Horton, R.: An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14 (2007)

    Google Scholar 

  155. Luikov, A.V.: Heat and Mass Transfer in Capillary Porous Bodies, Pergamon Press. Oxford, U.K., 523 p (1966)

    Google Scholar 

  156. Martin, J.W., Stark, T.D., Thalhamer, T., Gerbasi-Graf, G.T., Gortner, R.E.: Detection of aluminum waste reactions and associated waste fires. J. Hazard. Toxic Radioact. Waste 17(3), 164–174 (2013)

    Google Scholar 

  157. Mahajerani, M., Delage, P., Sulem, J., Monfared, M., Tang, A.M., Gatmiri, B.: A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian Claystone. Int. J. Rock Mech. Min. Sci. 52, 112–121 (2012). https://doi.org/10.1016/j.ijrmms.2012.02.012

    Article  Google Scholar 

  158. Mazdiyasni, O., AghaKouchak, A.: Substantial Increase in Concurrent Droughts and Heatwaves in the United States. Proc. Natl. Acad. Sci. 112(37), 11484–11489 (2015)

    Google Scholar 

  159. McCartney, J.S., Ge, S., Reed, A., Lu, N., Smits, K.: Soil-borehole thermal energy storage systems for district heating. Proceedings of the European Geothermal Congress 2013, European Geothermal Energy Council, Brussels, Belgium, pp. 1–10 (2013)

    Google Scholar 

  160. McCartney, J.S., Başer, T., Zhan, N., Lu, N., Ge, S., Smits, K.: Storage of solar thermal energy in borehole thermal energy storage systems. IGSHPA Technical Conference and Expo. Denver, CO. Mar. 14–17, pp. 1–8 (2017)

    Google Scholar 

  161. McCartney, J.S., Baser, T.: Role of coupled processes in thermal energy storage in the vadose zone. Second International Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2). Leeds, UK. Sep. 5–6, pp. 1–6 (2017)

    Google Scholar 

  162. McCartney, J.S., Murphy, K.D.: Investigation of potential dragdown/uplift effects on energy piles. Geomech. Energy Environ. 10(June), 21–28. https://doi.org/10.1016/j.gete.2017.03.001 (2017)

  163. McCartney, J.S., Sánchez, M., Tomac, I.: Energy geotechnics: advances in subsurface energy recovery, storage, and exchange. Comput. Geotech. 75(May), 244–256 (2016). https://doi.org/10.1016/j.compgeo.2016.01.002

    Article  Google Scholar 

  164. McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91(B9), 9533–9542 (1986)

    Google Scholar 

  165. Melillo, J.M., Richmond, T.C., and Yohe, G.W., Eds. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, p. 841 (2014)

    Google Scholar 

  166. Millington, R.J., Quirk, J.M.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)

    Google Scholar 

  167. Milly, P.C.D.: Moisture and heat-transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resour. Res. 18, 489–498 (1982). https://doi.org/10.1029/WR018i003p00489

    Article  Google Scholar 

  168. Mimouni, T., Laloui, L.: Towards a secure basis for the design of geothermal piles. Acta Geotech. 9(3), 355–366 (2014)

    Google Scholar 

  169. Monteith, J.L., Unsworth, M.H.: Principles of Environmental Physics. Routledge Chapman and Hall, New York, NY (1990)

    Google Scholar 

  170. Moradi, A.M., Smits, K., Massey, J., Cihan, A., McCartney, J.S.: Impact of coupled heat transfer and water flow on soil borehole thermal energy storage (SBTES) systems: experimental and modeling investigation. Geothermics. 57(September), 56–72 (2015)

    Google Scholar 

  171. Moradi, A.M., Smits, K., Lu, N., McCartney, J.S.: 3-D experimental and numerical investigation of heat transfer in unsaturated soil with an application to soil borehole thermal energy storage (SBTES) systems. Vadose Zone J. 1–17. https://doi.org/10.2136/vzj2016.03.0027 (2016)

  172. Mortezaei, K., Vahedifard, F.: Multi-scale simulation of thermal pressurization of fault fluid under CO2 injection for storage and utilization purposes. Int. J. Rock Mech. Min. Sci. 98, 111–120 (2017)

    Google Scholar 

  173. Mount, J., Twiss, R.: Subsidence, sea level rise, seismicity in the Sacramento-San Joaquin Delta. San Francisco Estuary Watershed Sci. 3(1). http://repositories.cdlib.org/jmie/sfews/vol3/iss1/art5 (2005)

  174. Mualem, Y.: Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(6), 1248–1254 (1976)

    Google Scholar 

  175. Mun, W., McCartney, J.S.: Constitutive model for the drained compression of unsaturated clay to high stresses. ASCE J. Geotech. Geoenviron. Eng. 04017014-11-11. https://doi.org/10.1061/(asce)gt.1943-5606.0001662 (2016)

  176. Murphy, K.D., McCartney, J.S., Henry, K.S.: Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech. 10(2), 179–195 (2015)

    Google Scholar 

  177. Nassar, I. N., Horton, R.: Water transport in unsaturated non-isothermal salty soil. 1. Experimental results. Soil Sci. Soc. Am. J. 53, 1323–1329 (1989)

    Google Scholar 

  178. Nassar, I.N., Horton, R., Globus, A.M.: Simultaneous transfer of heat, water, and solute in porous-media. II. Experiment and analysis. Soil Sci. Soc. Am. J. 56, 1357–1365 (1992)

    Google Scholar 

  179. Nastev, M., Therrien, R., Lefebvre, R., Gelinas, P.: Gas Production and migration in landfills and geological materials. J. Contam. Hydrol. 52, 187–211 (2001)

    Google Scholar 

  180. Ng, C.W.W., Mu, Q.Y., Zhou, C.: Effects of soil structure on the shear behavior of an unsaturated loess at different suctions and temperatures. Can. Geotech. J. 54(2), 270–279 (2017)

    Google Scholar 

  181. Nordell, B., Hellström, G.: High temperature solar heated seasonal storage system for low temperature heating of buildings. Appl. Energy 69(6), 511–523 (2000)

    Google Scholar 

  182. Nuth, M., Laloui, L.: Advances in modelling hysteretic water retention curve in deformable soils. Comput. Geotech. 35(6), 835–844 (2008)

    MATH  Google Scholar 

  183. Olgun, C.G., McCartney, J.S.: Long-term performance of heat exchanger pile groups. Acta Geotech. 10(5), 553–569 (2014)

    Google Scholar 

  184. Olgun, C.G., Ozudogru, T.Y., Abdelaziz, S.L., Senol, A.: Outcomes from the international workshop on thermoactive geotechnical systems for near-surface geothermal energy: from research to practice. J. Deep Found. Inst. 8(2), 58–72 (2014)

    Google Scholar 

  185. Olivella, S., Gens, A., Carrera, J., Alonso, E.E.: Numerical formulation for a simulator (CODE-BRIGHT) for the coupled analysis of saline media. Eng. Comput. 13(7), 87–112 (1996)

    MATH  Google Scholar 

  186. Ozudogru, T.Y., Ghasemi-Fare, O., Olgun, C.G., Basu, P.: Numerical modeling of vertical geothermal heat exchangers using finite difference and finite element techniques. Geotech. Geol. Eng. 33, 291–306 (2015)

    Google Scholar 

  187. Paaswell, R.E.: Temperature effects on clay soil consolidation. J. Soil Mech. Found. Eng. Div. 93(SM3), 9–22 (1967)

    Google Scholar 

  188. Pandey, R.N., Srivastava, S.K., Mikhailov, M.D.: Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach. Int. J. Heat Mass Transf. 42(14), 2649–2660 (1999)

    MATH  Google Scholar 

  189. Pasha, A. Y., Khoshghalb, A., Khalili, N.: Pitfalls in interpretation of gravimetric water content-based soil-water characteristic curve for deformable porous media. Int. J. Geomech. D4015004 (2015)

    Google Scholar 

  190. Pasha, A.Y., Khoshghalb, A., Khalili, N.: Hysteretic model for the evolution of water retention curve with void ratio. Eng. Mech. 143(7), 04017030 (2017)

    Google Scholar 

  191. Penman, H.L.: Gas and vapor movement in soil: I. The diffusion of vapors in porous solids. J. Agri. Sci. 30, 437–462 (1940)

    Google Scholar 

  192. Peron, H., Hueckel, T., Laloui, L., Hu, L.B.: Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanism identification. Can. Geotech. J. 46, 1177–1201 (2009)

    Google Scholar 

  193. Philip, J.R., de Vries, D.A.: Moisture movement in porous materials under temperature gradients. Transac. Am. Geophys. Union 38(2), 222–232 (1957)

    Google Scholar 

  194. Plum, R.L., Esrig, M.I.: Some temperature effects on soil compressibility and pore water pressure. Highway Res. Board, Rep. 103, 231–242 (1969)

    Google Scholar 

  195. Pollock, D.W.: Simulation of fluid flow and energy processes associated with radioactive waste disposal in unsaturated alluvium. Water Resour. Res. 22(5), 765–775 (1986)

    Google Scholar 

  196. Preene, M., Powrie, W.: Ground energy system: from analysis to geotechnical design. Géotechnique 59(3), 261–271 (2009)

    Google Scholar 

  197. Prunty, L.: Soil water retention and conductivity when vapor flow is important. J. Irrig. Drainage Eng. 129, 201–207 (2003)

    Google Scholar 

  198. Prunty, L., Horton, R.: Steady-state temperature distribution in nonisothermal unsaturated closed soil cells. Soil Sci. Soc. Am. J. 58, 1358–1363 (1994)

    Google Scholar 

  199. Rice, J.R.: Heating and weakening of faults during earthquake slip. J. Geophys. Res. 111, B05311 (2006). https://doi.org/10.1029/2005JB004006

    Article  Google Scholar 

  200. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics. 1(5), 318–333 (1931)

    MATH  Google Scholar 

  201. Robinson, J.D., Vahedifard, F.: Weakening mechanisms imposed on California’s levees under multiyear extreme drought. Clim. Change 137(1), 1–14 (2016)

    Google Scholar 

  202. Robinson, J.D., Vahedifard, F., AghaKouchak, A.: Rainfall-triggered slope instabilities under a changing climate: comparative study using historical and projected precipitation extremes. Can. Geotech. J. 54(1), 117–127 (2017)

    Google Scholar 

  203. Romero, E., Vaunat, J.: Retention curves of deformable clays: Experimental evidence and theoretical approaches in unsaturated soils. In: Proceedings of the International Workshop on Unsaturated Soil, A.A. Balkema, Rotterdam, Netherlands, pp. 91–106 (2000)

    Google Scholar 

  204. Rose, C.W.: Water transport in soil with a daily temperature wave I. Theory and experiment. Aust. J. Soil Res. 6, 31–44 (1968)

    Google Scholar 

  205. Ruokojarvi, P., Ruuskanen, J., Ettala, M., Rahkonen, P., Tarhanen, J.: Formation of polyaromatic hydrocarbons and polychlorinated organic compounds in municipal waste landfill fires. Chemosphere 31(8), 3899–3908 (1995)

    Google Scholar 

  206. Rutqvist, J.: Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Comput. Geosci. 37(6), 739–750 (2011)

    Google Scholar 

  207. Saito, H., Simunek, J., Mohanty, B.P.: Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J. 5, 784–800 (2006)

    Google Scholar 

  208. Sakai, M., Toride, N., Simunek, J.: Water and vapor movement with condensation and evaporation in a sandy column. Soil Sci. Soc. Am. J. 73, 707–717 (2009)

    Google Scholar 

  209. Salager, S., Nuth, M., Ferrari, A., Laloui, L.: Investigation into water retention behaviour of deformable soils. Can. Geotech. J. 50(2), 200–208 (2013)

    Google Scholar 

  210. Salager, S., François, B., El Youssoufi, M.S., Laloui, L., Saix, C.: Experimental investigations of temperature and suction effects on compressibility and pre-consolidation pressure of a sandy silt. Soils Found. 48(4), 453–466 (2008)

    Google Scholar 

  211. Sánchez, M., Gens, A., Guimarães, L.: Thermal-hydraulic-mechanical (THM) behavior of a large-scale in situ heating experiment during cooling and dismantling. Can. Geotech. J. 49, 1169–1195 (2012)

    Google Scholar 

  212. Sánchez, M., Gens., A., Olivella, S.: Thermo-hydro-mechanical analysis of a large scale heating test incorporating material fabric changes. Int. J. Numer. Anal. Meth. Geomech. 36(4): 391–342 (2012b)

    Google Scholar 

  213. Sánchez, M., Manzoli, O., Guimarães, L.: Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput. Geotech. 62, 27–39 (2014)

    Google Scholar 

  214. Sánchez, M., Arson, C., Gens, A., Aponte, F.: Analysis of unsaturated materials hydration incorporating the effect of thermo-osmotic flow. Geomech. Energy Environ. 6, 101–115 (2016a)

    Google Scholar 

  215. Sánchez, M., Gens, A., Villar, M.V., Olivella, S.: A truly coupled THM formulation for double porosity unsaturated soils. Int. J. Geomech.. ASCE. D4016015-1 (2016b)

    Google Scholar 

  216. Savvidou, C.: Centrifuge modelling of heat transfer in soil. Proceedings of Centrifuge 88, Corté, ed., Balkema, Rotterdam, pp. 583–591 (1988)

    Google Scholar 

  217. Schiffman, R.L.: A thermoelastic theory of consolidation. Environ. Geophys. Heat Transfer, 78–84 (1971)

    Google Scholar 

  218. Segall, P., Rubin, A.M., Bradley, A.M., Rice, J.R.: Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. Solid Earth 115, B12305 (2010). https://doi.org/10.1029/2010JB007449

    Article  Google Scholar 

  219. Segall, P., Bradley, A.M.: The role of thermal pressurization and dilatancy in controlling the rate of fault slip. J. Appl. Mech. 79(3), 031013 (2012)

    Google Scholar 

  220. Seneviratne, H.N., Carter, J.P., Booker, J.R.: Analysis of fully coupled thermomechanical behaviour around a rigid cylindrical heat source buried in clay. Int. J. Numer. Anal. Meth. Geomech. 18, 177–203 (1994)

    MATH  Google Scholar 

  221. Seneviratne, S.I., Lüthi, D., Litschi, M., Schär, C.: Land-atmosphere coupling and climate change in Europe. Nature 443(7108), 205 (2006)

    Google Scholar 

  222. Shah, D.J., Ramsey, J.W., Wang, M.: An experimental determination of the heat and mass transfer coefficients in moist, unsaturated soils. Int. J. Heat Mass Transf. 27(7), 1075–1085 (1984)

    Google Scholar 

  223. She, H.Y., Sleep, B.E.: The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems. Water Resour. Res. 34(10), 2587–2597 (1998)

    Google Scholar 

  224. Shukla, S., Safeeq, M., AghaKouchak, A., Guan, K., Funk, C.: Temperature impacts on the water year 2014 drought in California. Geophys. Res. Lett. 42(11), 4384–4393 (2015)

    Google Scholar 

  225. Shepherd, R., Wiltshire, R.J.: An analytical approach to coupled heat and moisture transport in soil. Transp. Porous Media 20, 281–304 (1995)

    Google Scholar 

  226. Shokri, N., Lehmann, P., Or, D.: Critical evaluation of enhancement factors for vapor transport through unsaturated porous media. Water Resour. 45, W10433 (2009)

    Google Scholar 

  227. Sibbitt, B., McClenahan, D., Djebbar, R., Thornton, J., Wong, B., Carriere, J., Kokko, J.: The performance of a high solar fraction seasonal storage district heating system—five years of operation. Energy Procedia. 30, 856–865 (2012)

    Google Scholar 

  228. Skempton, A.W.: Residual strength of clays in landslides, folded strata, and the laboratory. Géotechnique. 35(1), 3–18 (1985)

    Google Scholar 

  229. Smits, K.M., Cihan, A., Sakaki, S., Illangasekare, T.H.: Evaporation from soils under thermal boundary conditions: experimental and modeling investigation to compare equilibrium and nonequilibrium-based approaches. Water Resour. Res. 47, W05540 (2011). https://doi.org/10.1029/2010WR009533

    Article  Google Scholar 

  230. Smits, K.M., Sakaki, T., Howington, S.E., Peters, J.F., Illangasekare, T.H.: Temperature dependence of thermal properties of sands over a wide range of temperatures [30–70 °C]. Vadose Zone J. https://doi.org/10.2136/vzj2012.0033 (2013)

  231. Sophocleous, M.: Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour. Res. 15, 1195–1206 (1979)

    Google Scholar 

  232. Stark, T.D., Akhtar, K., Hussain, M.: Stability analyses for landfills experiencing elevated temperatures. Proc. GeoFlorida 2010, 1–8 (2010)

    Google Scholar 

  233. Stark, T.D., Martin, J.W., Gerbasi, G.T., Thalhamer, T.: Aluminum waste reaction indicators in an MSW landfill. J. Geotech. Geoenviron. Eng. 138(3), 252–261 (2012)

    Google Scholar 

  234. Stark, T.D., Choi, H., McCone, S.: Drained shear strength parameters for analysis of landslides. J. Geotech. Geoenviron. Eng. 131(5), 575–588 (2005)

    Google Scholar 

  235. Suryatriyastuti, M.E., Mroueh, H., Burlon, S.: A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput. Geotech. 55, 378–391 (2014)

    Google Scholar 

  236. Sultan, N., Delage, P., Cui, Y.J.: Temperature effects on the volume change behavior of boom clay. Eng. Geol. 64, 135–145 (2002)

    Google Scholar 

  237. Sutman, M., Brettmann, T. Olgun, C.G.: Thermo-mechanical behavior of energy piles: full-scale field test verification. DFI 39th Conference on Deep Found. pp. 1–11 (2014)

    Google Scholar 

  238. Takai, A., Ghaaowd, I., Katsumi, T., McCartney, J.S.: mpact of drainage conditions on the thermal volume change of soft clay. GeoChicago 2016: Sustainability, Energy and the Geoenvironment. Chicago. Aug. 14–18. pp. 32-41 (2016)

    Google Scholar 

  239. Tarantino, A.: A water retention model for deformable soils. Géotechnique 59(9), 751–762 (2009)

    Google Scholar 

  240. Tarn, J.Q., Wang, Y.M.: End effects of heat conduction in circular cylinders of functionally graded materials and laminated composites. Int. J. Heat Mass Transf. 47, 5741–5747 (2004)

    MATH  Google Scholar 

  241. Taylor, S.A., Cary, J.W.: Linear equations for the simultaneous flow of water and energy in a continuous system. Soil Sci. Soc. Am. J. 28, 167–172 (1964)

    Google Scholar 

  242. Tidfors, M., Sällfors, G.: Temperature effect on preconsolidation pressure. Geotech. Test. J. 12(1), 93–97 (1989)

    Google Scholar 

  243. Thomas, H.R., King, S.D.: Coupled temperature capillary potential variations in unsaturated soil. J Eng Mech. ASCE. 117(11), 2475–2491 (1991)

    Google Scholar 

  244. Thomas, H.R., Sansom, M.R.: Fully coupled analysis of heat, moisture and air transfer in unsaturated soil. J. Eng. Mech. 121(3), 392–405 (1995)

    Google Scholar 

  245. Thomas, H.R., He, Y.: A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation. Int. J. Numer. Meth. Eng. 40, 3421–3441 (1997)

    Google Scholar 

  246. Thomas, H.R., He, Y., Sansom, M.R., Li, C.L.W.: On the development of a model of the thermo-mechanical-hydraulic behavior of unsaturated soils. Eng. Geol. 41, 197–218 (1996)

    Google Scholar 

  247. Thomas, H.R., Sansom, M., Rees, S.W.: Non-isothermal flow. In: Environmental Geomechanics. Springer, pp. 131–169 (2001)

    Google Scholar 

  248. Thomas, H., Cleall, P., Chandler, N., Dixon, D., Mitchell, H.: Water infiltration into a large-scale in-situ experiment in an underground research laboratory. Géotechnique 53(2), 207–224 (2003)

    Google Scholar 

  249. Toll, D.G., Mendes, J., Hughes, P.N., Glendinning, S., Gallipoli, D.: Climate change and the role of unsaturated soil mechanics. Geotech. Eng. (SEAGS) 43(1), 76–82 (2012)

    Google Scholar 

  250. Towhata, I., Kuntiwattanakul, P., Seko, I., Ohishi, K.: Volume change of clays induced by heating as observed in consolidation tests. Soils Found. 33(4), 170–183 (1993)

    Google Scholar 

  251. Turnbull, K.F.: Transportation Resilience: Adaptation to Climate Change and Extreme Weather Events. Summary of the Fourth EU–US Transportation Research Symposium. In Transportation Research Board Conference Proceedings (No. 53) (2016)

    Google Scholar 

  252. Tsiampousi, A., Zdravkovic, L., Potts, D.M.: A three-dimensional soil-water retention curve. Géotechnique 63(2), 155–164 (2013)

    Google Scholar 

  253. Uchaipichat, A., Khalili, N.: Experimental investigation of thermo-hydro-mechanical behavior of an unsaturated silt. Géotechnique 59(4), 339–353 (2009)

    Google Scholar 

  254. Vahedifard, F., Robinson, J.D., AghaKouchak, A.: Can protracted drought undermine the structural integrity of California’s earthen levees? J. Geotech. Geoenviron. Eng. 142(6), 02516001 (2016)

    Google Scholar 

  255. Vahedifard, F., AghaKouchak, A., Ragno, E., Shahrokhabadi, S., Mallakpour, I.: Lessons from the Oroville Dam. Science 355(6330), 1139–1140 (2017)

    Google Scholar 

  256. Vahedifard, F., Cao, T.D., Thota, S.K., Ghazanfari, E.: Nonisothermal models for soil water characteristic curve. J. Geotech. Geoenviron. Eng. 144(9), 04018061 (2018)

    Google Scholar 

  257. Vahedifard, F., Williams, J. M., AghaKouchak, A.: Geotechnical Engineering in the Face of Climate Change: Role of Multi-Physics Processes in Partially Saturated Soils. 2018 International Foundations Congress and Equipment Exposition, IFCEE 2018, GSP No. 295. Orlando, Florida, March 15–10, ASCE, Reston, VA, 353-364 (2018b)

    Google Scholar 

  258. van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Google Scholar 

  259. Vardon, P.J.: Climatic influence on geotechnical infrastructure: a review. Environ. Geotech. 2(3), 166–174 (2015)

    Google Scholar 

  260. Vega, A., McCartney, J.S.: Cyclic heating effects on thermal volume change of silt. Environ. Geotech. 2(5), 257–268 (2015)

    Google Scholar 

  261. Veveakis, E., Stefanou, I., Sulem, J.: Failure in shear bands for granular materials: Thermo-hydro-chemo-mechanical effects. Géotech. Lett. 3(2), 31–36 (2013)

    Google Scholar 

  262. Villar, M.V., Sánchez, M., Gens, A.: Behaviour of a bentonite barrier in the laboratory: Experimental results up to 8 years and numerical simulation. Phys. Chem. Earth 33, S476–S485 (2008)

    Google Scholar 

  263. Wang, B., Bouazza, A., Singh, R., Haberfield, C., Barry-Macaulay, D., Baycan, S.: Post-temperature effects on shaft capacity of a full-scale geothermal energy pile. J. Geotech. Geoenviron. Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0001266, 04014125 (2014)

  264. Wang, W., Regueiro, R., McCartney, J.S.: Coupled axisymmetric thermo-poro-elasto-plastic finite element analysis of energy foundation centrifuge experiments in partially saturated silt. Geotech. Geol. Eng. 33(2), 373–388 (2015)

    Google Scholar 

  265. Wayllace, A., Lu, N.: A transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions. Geotech. Test. J. 35(1), 103–117 (2012)

    Google Scholar 

  266. Wheeler, S.J., Sharma, R.S., Buisson, M.S.R.: Coupling of hysteresis and stress–strain behaviour in unsaturated soil. Géotechnique. 53(1), 41–54 (2003)

    Google Scholar 

  267. Whitaker, S.: Simultaneous heat, mass and momentum transfer in porous media: a theory of drying porous media. Adv. Heat Transfer. 13, 119–203 (1977)

    Google Scholar 

  268. Wright, S.G., Zornberg, J.G., Aguettant, J.E.: The Fully Softened Shear Strength of High Plasticity Clays. FHWA/TX-07/0-5202-3 (2008)

    Google Scholar 

  269. Yesiller, N., Hanson, J., Liu, W.: Heat generation in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 131(11), 1330–1344 (2005)

    Google Scholar 

  270. Zhang, J., Datta, A.K.: Some considerations in modeling of moisture transport in heating of hygroscopic materials. Drying Technol. 22(8), 1983–2008 (2004)

    Google Scholar 

  271. Zhou, C., Ng, C.W.W.: A new and simple stress-dependent water retention model for unsaturated soil. Comput. Geotech. 62, 216–222 (2014)

    Google Scholar 

  272. Zhou, C., Ng, C.W.W.: Simulating the cyclic behavior of unsaturated soil at various temperatures using a bounding surface model. Géotechnique 66(4), 344–350 (2015)

    Google Scholar 

  273. Zhou, C., Ng, C.W.W.: Effects of temperature and suction on plastic deformation of unsaturated silt under cyclic loads. J. Mater. Civ. Eng. 28(12), 04016170 (2016)

    Google Scholar 

  274. Zhou, A.N., Sheng, D., Scott, S.W., Gens, A.: Interpretation of unsaturated soil behavior in the stress–saturation space, I: volume change and water retention behavior. Comput. Geotech. 43, 178–187 (2012)

    Google Scholar 

Download references

Acknowledgements

JM would like to acknowledge financial support of this work from NSF grants CMMI-0928159 and CMMI-1054190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. McCartney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCartney, J.S., Jafari, N.H., Hueckel, T., Sánchez, M., Vahedifard, F. (2019). Emerging Thermal Issues in Geotechnical Engineering. In: Lu, N., Mitchell, J. (eds) Geotechnical Fundamentals for Addressing New World Challenges. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-06249-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06249-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06248-4

  • Online ISBN: 978-3-030-06249-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics