Skip to main content

Bio-composites: Eco-friendly Substitute of Glass Fiber Composites

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The biodegradable composites are gaining more attention due to the growing environmental concerns. This term is specifically employed in the biodegradable plastics reinforced with natural fibers. The conventionally used synthetic fibers and polymeric resins are nonbiodegradable, and their recycling is uneconomical. Contrary to this, the natural fibers are a renewable source, with worldwide availability and low price. Both the biopolymers and natural fibers are biodegradable and therefore easily decomposed without spoiling the environment. This chapter provides a brief introduction of bio-composites and their various application areas. The constituents of bio-composite, i.e., natural fibers and biodegradable polymers, along with their classifications and properties are discussed in detail. Owing to the hydrophilic property of natural fibers, there are certain limitations of bio-composites. These limitations and their remedies have been deliberated in depth. The mechanical performance of bio-composites from published literature with different polymers and reinforcements is also conversed. The chapter concludes that the bio-composites have the potential to replace glass fiber composites in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Guna V, Ilangovan M, Ananthaprasad MG, Reddy N (2018) Hybrid biocomposites. Polym Compos 39:E30–E54. https://doi.org/10.1002/pc.24641

    Article  CAS  Google Scholar 

  2. Khan A, Lemmen C (2013) Bricks and urbanism in the Indus Valley rise and decline. arXiv preprint arXiv:1303.1426

    Google Scholar 

  3. Goodhew S, Griffiths R (2005) Sustainable earth walls to meet the building regulations. Energy Build 37:451–459. https://doi.org/10.1016/j.enbuild.2004.08.005

    Article  Google Scholar 

  4. Nagalakshmaiah M, Afrin S, Malladi RP et al (2018) Biocomposites: present trends and challenges for the future. In: Green composites for automotive applications. Elsevier, San Diego, pp 197–215

    Chapter  Google Scholar 

  5. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  6. Jawaid M, Thariq M, Saba N (2019) Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Boca raton

    Google Scholar 

  7. Nunna S, Chandra PR, Shrivastava S, Jalan A (2012) A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 31:759–769. https://doi.org/10.1177/0731684412444325

    Article  CAS  Google Scholar 

  8. Amir SMM, Sultan MTH, Jawaid M et al (2019) Nondestructive testing method for Kevlar and natural fiber and their hybrid composites. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, San Diego, pp 367–388

    Chapter  Google Scholar 

  9. Karakoti A, Tripathy P, Kar VR et al (2019) Finite element modeling of natural fiber-based hybrid composites. In: Modelling of damage processes in biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, San Diego, pp 1–18

    Google Scholar 

  10. Jamir MRM, Majid MSA, Khasri A (2018) Natural lightweight hybrid composites for aircraft structural applications. In: Sustainable composites for aerospace applications. Elsevier, San Diego, pp 155–170

    Chapter  Google Scholar 

  11. Bajpai PK, Singh I, Madaan J (2012) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27:52–81. https://doi.org/10.1177/0892705712439571

    Article  CAS  Google Scholar 

  12. Netravali AN, Huang X, Mizuta K (2007) Advanced “green” composites. Adv Compos Mater 16:269–282. https://doi.org/10.1163/156855107782325230

    Article  CAS  Google Scholar 

  13. John MJ, Anandjiwala RD, Pothan LA, Thomas S (2012) Cellulosic fibre-reinforced green composites. Compos Interfaces 14:733–751. https://doi.org/10.1163/156855407782106546

    Article  CAS  Google Scholar 

  14. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  15. Boegler O, Kling U, Empl A, Isikveren AT (2014) Potential of sustainable materials in wing structural design. Dtsch Luft- und Raumfahrtkongress 327:1–6

    Google Scholar 

  16. Anandjiwala RD, John MJ, Wambua P, et al (2008) Bio-based structural composite materials for aerospace applications. In: South African International Aerospace Symposium (SAIAS2008), Cape Town, 14–16

    Google Scholar 

  17. Subash T, Nadaraja Pillai S (2015) Bast fibers reinforced green composites for aircraft indoor structures applications: review. In: National conference on recent trends and developments in sustainable green technologies, Madras Institute of Technology, Anna University, Chennai pp 72–77

    Google Scholar 

  18. Sánchez-Safont EL, Aldureid A, Lagarón JM et al (2018) Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos Part B Eng 145:215–225. https://doi.org/10.1016/j.compositesb.2018.03.037

    Article  CAS  Google Scholar 

  19. Saba N, Jawaid M, Sultan MTH, Alothman OY (2017) Green biocomposites for structural applications. Green Energy Technol 1–27. https://doi.org/10.1007/978-3-319-49382-4_1

    Google Scholar 

  20. Khan MI, Umair M, Shaker K, et al (2020) Impact of waste fibers on the mechanical performance of concrete composites. J Text Inst 1–9. https://doi.org/10.1080/00405000.2020.1736423

  21. Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68:1877–1885. https://doi.org/10.1016/j.compscitech.2008.01.008

    Article  CAS  Google Scholar 

  22. Khalil HA, Suraya NL (2011) Anhydride modification of cultivated kenaf bast fibers: morphological, spectroscopic and thermal studies. Bioresources 6:1122–1135

    Google Scholar 

  23. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. https://doi.org/10.1016/j.carbpol.2014.03.039

    Article  CAS  Google Scholar 

  24. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565. https://doi.org/10.1016/j.compscitech.2007.05.044

    Article  CAS  Google Scholar 

  25. Dittenber DB, Gangarao HVSS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  26. Shah DU, Porter D, Vollrath F (2014) Opportunities for silk textiles in reinforced biocomposites: studying through-thickness compaction behaviour. Compos Part A Appl Sci Manuf 62:1–22

    Article  CAS  Google Scholar 

  27. Liu X, Yi X, Zhu J (2018) Bio-based epoxies and composites as environmentally friendly alternative materials. In: Thermosets: structure, properties, and applications, 2nd edn. Elsevier, San Diego, pp 621–637

    Chapter  Google Scholar 

  28. Kim JT, Netravali AN (2010) Mechanical, thermal, and interfacial properties of green composites with ramie fiber and soy resins. J Agric Food Chem 58:5400–5407. https://doi.org/10.1021/jf100317y

    Article  CAS  Google Scholar 

  29. Xiao-Yun W, Qiu-Hong W, Huang G (2010) Research on mechanical behavior of the flax/polylactic acid composites. J Reinf Plast Compos 29:2561–2567. https://doi.org/10.1177/0731684409355201

    Article  CAS  Google Scholar 

  30. Shah DU, Schubel PJ, Clifford MJ (2013) Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos Part B Eng 52:172–181. https://doi.org/10.1016/j.compositesb.2013.04.027

    Article  CAS  Google Scholar 

  31. Li X, Panigrahi S, Tabil LG (2009) A study on flax fiber reinforced polyethylene biocomposites. Appl Eng Agric 25:525–532

    Article  CAS  Google Scholar 

  32. Aly-Hassan MS (2015) A new perspective in multifunctional composite materials. In: Multifunctionality of polymer composites: challenges and new solutions. Elsevier, San Diego, pp 42–67

    Chapter  Google Scholar 

  33. Mistri E, Routh S, Ray D et al (2011) Green composites from maleated castor oil and jute fibres. Ind Crop Prod 34:900–906. https://doi.org/10.1016/j.indcrop.2011.02.008

    Article  CAS  Google Scholar 

  34. Venkateshwaran N, Elayaperumal A (2010) Banana fiber reinforced polymer composites – a review. J Reinf Plast Compos 29:2387–2396. https://doi.org/10.1177/0731684409360578

    Article  CAS  Google Scholar 

  35. Sharma NK, Kumar V (2013) Studies on properties of banana fiber reinforced green composite. J Reinf Plast Compos 32:525–532. https://doi.org/10.1177/0731684412473005

    Article  CAS  Google Scholar 

  36. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci. https://doi.org/10.1155/2015/950567

    Article  Google Scholar 

  37. Leao AL, Souza SF, Cherian BM et al (2010) Pineapple leaf fibers for composites and cellulose. Mol Cryst Liq Cryst 522:36/[336]–41/[341]. https://doi.org/10.1080/15421401003722930

    Article  CAS  Google Scholar 

  38. Abera Betelie A, Nicholas Sinclair A, Kortschot M et al (2019) Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio. AIMS Mater Sci 6:985–996. https://doi.org/10.3934/matersci.2019.6.985

    Article  Google Scholar 

  39. Nazir MU, Shaker K, Ahmad S et al (2017) Investigating the mechanical behavior of composites made from textile industry waste. J Text Inst 108:835–839. https://doi.org/10.1080/00405000.2016.1193982

    Article  CAS  Google Scholar 

  40. Ashori A, Nourbakhsh A (2009) Characteristics of wood-fiber plastic composites made of recycled materials. Waste Manag 29:1291–1295. https://doi.org/10.1016/j.wasman.2008.09.012

    Article  CAS  Google Scholar 

  41. Shaker K, Khan RMW, Jabbar M et al (2020) Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Ind Crop Prod (online). https://doi.org/10.1016/j.indcrop.2020.112518

    Article  CAS  Google Scholar 

  42. Das K, Ray D, Adhikary K et al (2010) Development of recycled polypropylene matrix composites reinforced with fly ash. J Reinf Plast Compos 29:510–517. https://doi.org/10.1177/0731684408099415

    Article  CAS  Google Scholar 

  43. Pfister DP, Larock RC (2013) Green composites using switchgrass as a reinforcement for a conjugated linseed oil-based resin. J Appl Polym Sci 1921–1928. https://doi.org/10.1002/app.37536

    Article  Google Scholar 

  44. Pfister DP, Larock RC (2010) Green composites from a conjugated linseed oil-based resin and wheat straw. Compos Part A Appl Sci Manuf 41:1279–1288. https://doi.org/10.1016/j.compositesa.2010.05.012

    Article  CAS  Google Scholar 

  45. Nyambo C, Mohanty AK, Misra M (2010) Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 11:1654–1660. https://doi.org/10.1021/bm1003114

    Article  CAS  Google Scholar 

  46. Ali MA, El-nemr KF, Hassan MM (2011) Waste newsprint fibers for reinforcement of radiation-cured styrene butadiene rubber-based composites – Part I: mechanical and physical properties. J Reinf Plast Compos 30:721–737. https://doi.org/10.1177/0731684411407949

    Article  CAS  Google Scholar 

  47. Kinoshita H, Kaizu K, Fukuda M et al (2009) Development of green composite consists of woodchips, bamboo fibers and biodegradable adhesive. Compos Part B Eng 40:607–612. https://doi.org/10.1016/j.compositesb.2009.04.004

    Article  CAS  Google Scholar 

  48. Racz I, Andersen E, Aranguren MI, Marcovich NE (2009) Wood flour – recycled polyol based polyurethane lightweight composites. J Compos Mater 43:2871–2884. https://doi.org/10.1177/0021998309345308

    Article  CAS  Google Scholar 

  49. Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  CAS  Google Scholar 

  50. Amieva EJ-C, Velasco-Santos C, Martinez-Hernandez A et al (2014) Composites from chicken feathers quill and recycled polypropylene. J Compos Mater 49:275–283. https://doi.org/10.1177/0021998313518359

    Article  CAS  Google Scholar 

  51. Babu KM (2015) Natural textile fibres: animal and silk fibres. In: Textiles and fashion: materials, design and technology. Elsevier, San Diego, pp 57–78

    Chapter  Google Scholar 

  52. Babu KM (2019) Developments in the processing and applications of silk. In: Silk. Elsevier, San Diego, pp 129–142

    Google Scholar 

  53. Nadhan AV, Rajulu AV, Li R et al (2012) Properties of waste silk short fiber/cellulose green composite films. J Compos Mater 46:123–127. https://doi.org/10.1177/0021998311410507

    Article  CAS  Google Scholar 

  54. Sekhar MC, Veerapratap S, Song JI et al (2012) Tensile properties of short waste silk fibers/wheat protein isolate green composites. Mater Lett 77:86–88. https://doi.org/10.1016/j.matlet.2012.02.115

    Article  CAS  Google Scholar 

  55. Yahaya R, Sapuan SM, Jawaid M, et al (2017) Review of kenaf reinforced hybrid biocomposites: potential in defence applications. Curr Anal Chem 13. https://doi.org/10.2174/1573411013666171113150225

    Article  CAS  Google Scholar 

  56. Masood Z, Ahmad S, Umair M et al (2018) Mechanical behaviour of hybrid composites developed from textile waste. Fibres Text East Eur 26:46–52. https://doi.org/10.5604/01.3001.0010.7796

    Article  Google Scholar 

  57. Lambert S, Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 46:6855–6871. https://doi.org/10.1039/c7cs00149e

    Article  CAS  Google Scholar 

  58. John MJ (2017) Environmental degradation in biocomposites. Elsevier, San Diego

    Chapter  Google Scholar 

  59. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. https://doi.org/10.1016/j.carbpol.2011.08.078

    Article  CAS  Google Scholar 

  60. John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  61. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56:111–122. https://doi.org/10.1016/j.carbpol.2003.11.015

    Article  CAS  Google Scholar 

  62. Avérous L, Pollet E (2012) Green nano-biocomposites. In: Environmental silicate nano-biocomposites. Springer, London

    Chapter  Google Scholar 

  63. Abilash N, Sivapragash M (2013) Environmental benefits of eco-friendly natural fiber reinforced polymeric composite materials. Int J Appl Innov Eng Manag 2:53–59

    Google Scholar 

  64. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198. https://doi.org/10.3390/ma6115171

    Article  CAS  Google Scholar 

  65. Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 38:1893–1901. https://doi.org/10.1016/j.compositesa.2007.04.001

    Article  CAS  Google Scholar 

  66. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  67. Ali A, Shaker K, Nawab Y et al (2018) Hydrophobic treatment of natural fibers and their composites – a review. J Ind Text 47:2153–2183. https://doi.org/10.1177/1528083716654468

    Article  CAS  Google Scholar 

  68. Khan GMA, Alam S (2013) Surface chemical treatments of jute fiber for high value composite uses. J Mater Sci 1:39–44

    Google Scholar 

  69. Das K, Adhikary K, Ray D, Bandyopadhyay NR (2010) Development of recycled polypropylene matrix composites reinforced with waste jute caddies. J Reinf Plast Compos 29:201–208. https://doi.org/10.1177/0731684408096929

    Article  CAS  Google Scholar 

  70. Chen X, Zhang N, Gu S et al (2014) Preparation and properties of ramie fabric-reinforced thermoset poly lactic acid composites. J Reinf Plast Compos 33:953–963. https://doi.org/10.1177/0731684413520264

    Article  CAS  Google Scholar 

  71. Ameer MH, Shaker K, Ashraf M et al (2017) Interdependence of moisture, mechanical properties, and hydrophobic treatment of jute fibre-reinforced composite materials. J Text Inst 108:1768–1776. https://doi.org/10.1080/00405000.2017.1285201

    Article  CAS  Google Scholar 

  72. Ali A, Shaker K, Nawab Y et al (2015) Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. J Reinf Plast Compos 34:2059–2068. https://doi.org/10.1177/0731684415610007

    Article  CAS  Google Scholar 

  73. Shaker K, Ashraf M, Jabbar M et al (2016) Bioactive woven flax- based composites: development and characterisation. J Ind Text 46:549–561. https://doi.org/10.1177/1528083715591579

    Article  CAS  Google Scholar 

  74. Munikenche Gowda T, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A Appl Sci Manuf 30:277–284. https://doi.org/10.1016/S1359-835X(98)00157-2

    Article  Google Scholar 

  75. Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci 40:4221–4229

    Article  Google Scholar 

  76. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manuf 38:1664–1674. https://doi.org/10.1016/j.compositesa.2007.02.001

    Article  CAS  Google Scholar 

  77. Mishra R, Behera BK, Militky J (2014) 3D woven green composites from textile waste: mechanical performance. J Text Inst 105:460–466. https://doi.org/10.1080/00405000.2013.820865

    Article  CAS  Google Scholar 

  78. Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl Sci Manuf 37:1368–1376. https://doi.org/10.1016/j.compositesa.2005.08.016

    Article  CAS  Google Scholar 

  79. Adekunle K, Cho S-W, Ketzscher R, Skrifvars M (2011) Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications. J Appl Polym Sci 124. https://doi.org/10.1002/app.35478

  80. Rodriguez ES, Stefani PM, Vazquez A (2007) Effects of fibers’ alkali treatment on the resin transfer molding processing and mechanical properties of Jute – Vinyl ester composites. J Compos Mater 41:1729–1741

    Article  CAS  Google Scholar 

  81. Jawaid M, Alothman OY, Paridah MT, Khalil HPSA (2014) Effect of oil palm and jute fiber treatment on mechanical performance of epoxy hybrid composites. Int J Polym Anal Charact 19:62–69. https://doi.org/10.1080/1023666X.2014.858429

    Article  CAS  Google Scholar 

  82. Karahan M, Karahan N (2015) Investigation of the tensile properties of natural and natural/synthetic hybrid fiber woven fabric composites. J Reinf Plast Compos 34:795–806. https://doi.org/10.1177/0731684415581071

    Article  CAS  Google Scholar 

  83. Akil HM, Santulli C, Sarasini F et al (2014) Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos Sci Technol 94:62–70. https://doi.org/10.1016/j.compscitech.2014.01.017

    Article  CAS  Google Scholar 

  84. Nawab Y, Kashif M, Asghar MA et al (2018) Development & characterization of green composites using novel 3D woven preforms. Appl Compos Mater. https://doi.org/10.1007/s10443-018-9720-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khubab Shaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shaker, K., Nawab, Y., Jabbar, M. (2020). Bio-composites: Eco-friendly Substitute of Glass Fiber Composites. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_108-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics