Skip to main content

A Classical-Quantum Hybrid Approach for Unsupervised Probabilistic Machine Learning

  • Conference paper
  • First Online:
Book cover Advances in Information and Communication (FICC 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 70))

Included in the following conference series:

Abstract

For training unsupervised probabilistic machine learning models, matrix computation and sample generation are the two key steps. While GPUs excel at matrix computation, they use pseudo-random numbers to generate samples. Contrarily, Adiabatic Quantum Processors (AQP) use quantum mechanical systems to generate samples accurately and quickly, but are not suited for matrix computation. We present a Classical-Quantum Hybrid Approach for training unsupervised probabilistic machine learning models, leveraging GPUs for matrix computations and the D-Wave quantum sampling library for sample generation. We compare this approach to classical and quantum approaches across four performance metrics. Our results indicate that while the hybrid approach–which uses one AQP and one GPU–outperforms quantum and one of the classical approaches, it performs comparably to the GPU approach, and is outperformed by the CPU approach, which uses 56 high-end CPUs. Lastly, we compare sampling on AQP versus sampling library and show that AQP performs better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)

    Google Scholar 

  2. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: Firecaffe: near-linear acceleration of deep neural network training on compute clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2592–2600 (2016)

    Google Scholar 

  3. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, p. 4, ACM (2015)

    Google Scholar 

  4. Kish, L.B.: End of moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 305(3–4), 144–149 (2002)

    Article  Google Scholar 

  5. Potok, T.E., Schuman, C.D., Young, S.R., Patton, R.M., Spedalieri, F., Liu, J., Yao, K.-T., Rose, G., Chakma, G.: A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. In: Machine Learning in HPC Environments (MLHPC), Workshop on, pp. 47–55, IEEE (2016)

    Google Scholar 

  6. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum boltzmann machine arXiv preprint arXiv:1601.02036 (2016)

  7. Gruska, J.: Quantum computing, vol. 2005. McGraw-Hill London (1999)

    Google Scholar 

  8. Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288(5467), 824–828 (2000)

    Article  Google Scholar 

  9. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning, pp. 791–798 ACM (2007)

    Google Scholar 

  10. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for natural language understanding. IEEE/ACM Trans. Audio, Speech, and Lang. Process. 22(4), 778–784 (2014)

    Article  Google Scholar 

  11. Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and Systems Science, pp. 7174–7201. Springer (2009)

    Google Scholar 

  12. Frisch, A.: Ibm qintroduction into quantum computing with live demo. In: System-on-Chip Conference (SOCC), 2017 30th IEEE International, pp. 1–2, IEEE (2017)

    Google Scholar 

  13. 2018 CES: Intel advances quantum and neuromorphic computing research’ 2018. https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/

  14. Terhal, B.M.: Quantum supremacy, here we come. Nat. Phys. p. 1 (2018)

    Google Scholar 

  15. Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011)

    Article  Google Scholar 

  16. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite-range tunneling? Phys. Rev. X 6(3), 031015 (2016)

    Google Scholar 

  17. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  Google Scholar 

  18. DeBenedictis, E.P.: A future with quantum machine learning. Computer 51(2), 68–71 (2018)

    Article  Google Scholar 

  19. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE, Tech. Rep. (1986)

    Google Scholar 

  20. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  21. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted boltzmann machine. Neuro Comput. 122, 13–23 (2013)

    Google Scholar 

  22. Jaitly, N., Hinton, G.: Learning a better representation of speech soundwaves using restricted boltzmann machines. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5884–5887, IEEE (2011)

    Google Scholar 

  23. Le Roux, N., Bengio, Y.: Representational power of restricted boltzmann machines and deep belief networks. Neural Comput. 20(6), 1631–1649 (2008)

    Article  MathSciNet  Google Scholar 

  24. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, pp. 609–616, ACM, 2009

    Google Scholar 

  26. Mohamed, A.-R., Yu, D., Deng, L.: Investigation of full-sequence training of deep belief networks for speech recognition. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  27. Zhou, S., Chen, Q., Wang, X.: Fuzzy deep belief networks for semi-supervised sentiment classification. Neuro Comput. 131, 312–322 (2014)

    Google Scholar 

  28. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: International Conference on Artificial Neural Networks, pp. 52–59. Springer (2011)

    Google Scholar 

  29. Oliphant, T.E.: A guide to NumPy, vol. 1. Trelgol Publishing USA (2006)

    Google Scholar 

  30. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  31. D-Wave Systems Inc.: Training probabilistic models using d-wave sampling libraries (2018)

    Google Scholar 

  32. D-Wave Systems Inc.: Developer guide for python (2018)

    Google Scholar 

  33. Bierhorst, P., Knill, E., Glancy, S., Zhang, Y., Mink, A., Jordan, S., Rommal, A., Liu, Y.-K., Christensen, B., Nam, S.W., et al.: Experimentally generated randomness certified by the impossibility of superluminal signals. Nature 556(7700), 223 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Date .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Date, P., Schuman, C., Patton, R., Potok, T. (2020). A Classical-Quantum Hybrid Approach for Unsupervised Probabilistic Machine Learning. In: Arai, K., Bhatia, R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_9

Download citation

Publish with us

Policies and ethics